Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55748 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ 0.8359 1.0133 0.825 [X:[], M:[0.9036], q:[0.7259, 0.7259, 0.7259], qb:[0.5482, 0.5482, 0.533], phi:[0.5482]] [X:[], M:[[0, 0, 4]], q:[[-1, 0, 2], [1, 0, 0], [0, 0, 1]], qb:[[0, -1, -4], [0, 1, 0], [0, 0, 9]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \tilde{q}_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1q_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$ . -7 t^2.71 + 2*t^3.24 + t^3.29 + 3*t^3.78 + 6*t^3.82 + 3*t^4.36 + t^4.84 + 2*t^4.89 + 3*t^4.93 + t^5.42 - 7*t^6. - 2*t^6.05 + 6*t^6.49 + 2*t^6.53 - 2*t^6.58 + 6*t^7.02 + 12*t^7.07 + 6*t^7.55 + 16*t^7.6 + 14*t^7.64 - 2*t^7.69 + 2*t^8.09 + 10*t^8.13 + 16*t^8.18 + 3*t^8.22 + 3*t^8.62 + 6*t^8.67 + 5*t^8.71 + 12*t^8.76 + t^8.8 - t^4.64/y + (2*t^8.95)/y - t^4.64*y + 2*t^8.95*y g3^4*t^2.71 + (g3^5*t^3.24)/g2 + g2*g3^9*t^3.24 + t^3.29/g3^4 + g1*g3^9*t^3.78 + g3^10*t^3.78 + (g3^11*t^3.78)/g1 + g1*g2*t^3.82 + (g1*t^3.82)/(g2*g3^4) + t^3.82/(g2*g3^3) + t^3.82/(g1*g2*g3^2) + g2*g3*t^3.82 + (g2*g3^2*t^3.82)/g1 + g1*g3*t^4.36 + g3^2*t^4.36 + (g3^3*t^4.36)/g1 + g3^16*t^4.84 + (g3^3*t^4.89)/g2 + g2*g3^7*t^4.89 + t^4.93/(g2^2*g3^10) + t^4.93/g3^6 + (g2^2*t^4.93)/g3^2 + g3^8*t^5.42 - 3*t^6. - t^6./(g2^2*g3^4) - (g1*t^6.)/g3 - (g3*t^6.)/g1 - g2^2*g3^4*t^6. - t^6.05/(g2*g3^13) - (g2*t^6.05)/g3^9 + (g3^10*t^6.49)/g2^2 + g1*g3^13*t^6.49 + 2*g3^14*t^6.49 + (g3^15*t^6.49)/g1 + g2^2*g3^18*t^6.49 + (g3*t^6.53)/g2 + g2*g3^5*t^6.53 - (g1*t^6.58)/g3^9 - t^6.58/(g1*g3^7) + (g1*g3^14*t^7.02)/g2 + (g3^15*t^7.02)/g2 + (g3^16*t^7.02)/(g1*g2) + g1*g2*g3^18*t^7.02 + g2*g3^19*t^7.02 + (g2*g3^20*t^7.02)/g1 + (g1*g3*t^7.07)/g2^2 + (g3^2*t^7.07)/g2^2 + (g3^3*t^7.07)/(g1*g2^2) + 2*g1*g3^5*t^7.07 + 2*g3^6*t^7.07 + (2*g3^7*t^7.07)/g1 + g1*g2^2*g3^9*t^7.07 + g2^2*g3^10*t^7.07 + (g2^2*g3^11*t^7.07)/g1 + g1^2*g3^18*t^7.55 + g1*g3^19*t^7.55 + 2*g3^20*t^7.55 + (g3^21*t^7.55)/g1 + (g3^22*t^7.55)/g1^2 + (g1^2*g3^5*t^7.6)/g2 + (2*g1*g3^6*t^7.6)/g2 + (2*g3^7*t^7.6)/g2 + (2*g3^8*t^7.6)/(g1*g2) + (g3^9*t^7.6)/(g1^2*g2) + g1^2*g2*g3^9*t^7.6 + 2*g1*g2*g3^10*t^7.6 + 2*g2*g3^11*t^7.6 + (2*g2*g3^12*t^7.6)/g1 + (g2*g3^13*t^7.6)/g1^2 + t^7.64/g1^2 + g1^2*g2^2*t^7.64 + (g1^2*t^7.64)/(g2^2*g3^8) + (g1*t^7.64)/(g2^2*g3^7) + t^7.64/(g2^2*g3^6) + t^7.64/(g1*g2^2*g3^5) + (g1^2*t^7.64)/g3^4 + t^7.64/(g1^2*g2^2*g3^4) + (g1*t^7.64)/g3^3 + t^7.64/(g1*g3) + g1*g2^2*g3*t^7.64 + g2^2*g3^2*t^7.64 + (g2^2*g3^3*t^7.64)/g1 + (g2^2*g3^4*t^7.64)/g1^2 - t^7.69/(g2*g3^15) - (g2*t^7.69)/g3^11 + (g3^21*t^8.09)/g2 + g2*g3^25*t^8.09 + (g3^8*t^8.13)/g2^2 + g1^2*g3^10*t^8.13 + g1*g3^11*t^8.13 + 4*g3^12*t^8.13 + (g3^13*t^8.13)/g1 + (g3^14*t^8.13)/g1^2 + g2^2*g3^16*t^8.13 + t^8.18/(g1*g2) + t^8.18/(g2^3*g3^5) + (g1^2*t^8.18)/(g2*g3^3) + (g1*t^8.18)/(g2*g3^2) + (3*t^8.18)/(g2*g3) + (g3*t^8.18)/(g1^2*g2) + g1^2*g2*g3*t^8.18 + g1*g2*g3^2*t^8.18 + 3*g2*g3^3*t^8.18 + (g2*g3^4*t^8.18)/g1 + (g2*g3^5*t^8.18)/g1^2 + g2^3*g3^7*t^8.18 + t^8.22/(g2^2*g3^14) + t^8.22/g3^10 + (g2^2*t^8.22)/g3^6 + g1*g3^25*t^8.62 + g3^26*t^8.62 + (g3^27*t^8.62)/g1 + (g1*g3^12*t^8.67)/g2 + (g3^13*t^8.67)/g2 + (g3^14*t^8.67)/(g1*g2) + g1*g2*g3^16*t^8.67 + g2*g3^17*t^8.67 + (g2*g3^18*t^8.67)/g1 + t^8.71/g2^2 + (g1*t^8.71)/(g2^2*g3) + (g3*t^8.71)/(g1*g2^2) - g3^4*t^8.71 + g1*g2^2*g3^7*t^8.71 + g2^2*g3^8*t^8.71 + (g2^2*g3^9*t^8.71)/g1 + (g2^3*t^8.76)/g1 + (g1*t^8.76)/(g2^3*g3^14) + t^8.76/(g2^3*g3^13) + t^8.76/(g1*g2^3*g3^12) + (g1*t^8.76)/(g2*g3^10) + t^8.76/(g2*g3^9) + t^8.76/(g1*g2*g3^8) + (g1*g2*t^8.76)/g3^6 + (g2*t^8.76)/g3^5 + (g2*t^8.76)/(g1*g3^4) + (g1*g2^3*t^8.76)/g3^2 + (g2^3*t^8.76)/g3 + t^8.8/g3^18 - t^4.64/(g3^2*y) + (g3^9*t^8.95)/(g2*y) + (g2*g3^13*t^8.95)/y - (t^4.64*y)/g3^2 + (g3^9*t^8.95*y)/g2 + g2*g3^13*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55659 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.8544 1.0423 0.8198 [X:[], M:[0.8556], q:[0.7139, 0.7139, 0.5695], qb:[0.5722, 0.5722, 0.5695], phi:[0.5722]] t^2.57 + t^3.42 + 5*t^3.43 + 4*t^3.85 + 4*t^3.86 + t^4.28 + 4*t^5.13 + 4*t^5.14 + 3*t^5.15 + t^5.98 - 8*t^6. - t^4.72/y - t^4.72*y detail