Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55750 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_3\tilde{q}_1$ + $ M_2q_2\tilde{q}_3$ 0.8978 1.1033 0.8137 [X:[], M:[0.727, 0.727], q:[0.6302, 0.6428, 0.6302], qb:[0.6428, 0.6302, 0.6302], phi:[0.5484]] [X:[], M:[[0, -2, -2, 0], [-4, -2, 0, 0]], q:[[-4, 0, 2, 4], [4, 2, 0, -4], [4, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_3\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_1q_3$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_2^2$, $ M_1^2$, $ M_1M_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_2q_1q_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_2$ . -8 2*t^2.18 + t^3.29 + 6*t^3.78 + 6*t^3.82 + t^3.86 + 3*t^4.36 + 10*t^5.43 + 8*t^5.46 + 2*t^5.47 + 3*t^5.5 + 4*t^5.96 - 8*t^6. - 6*t^6.04 + 4*t^6.54 + t^6.58 + 6*t^7.07 + 6*t^7.11 + t^7.15 + 20*t^7.56 + 28*t^7.6 + 12*t^7.61 + 21*t^7.64 + 4*t^7.68 + t^7.71 - 5*t^8.14 - 8*t^8.17 - 14*t^8.18 - 3*t^8.21 - 3*t^8.22 + 15*t^8.72 + 8*t^8.75 + 2*t^8.76 + 3*t^8.79 - t^4.65/y - (2*t^6.83)/y + t^7.35/y + t^7.36/y - t^7.94/y + (2*t^8.46)/y + (2*t^8.47)/y + (12*t^8.96)/y - t^4.65*y - 2*t^6.83*y + t^7.35*y + t^7.36*y - t^7.94*y + 2*t^8.46*y + 2*t^8.47*y + 12*t^8.96*y t^2.18/(g1^4*g2^2) + t^2.18/(g2^2*g3^2) + t^3.29/(g1^2*g2^2*g3^2*g4^2) + g1^4*g3^2*t^3.78 + g1^4*g4^4*t^3.78 + 2*g3^2*g4^4*t^3.78 + (g3^4*g4^4*t^3.78)/g1^4 + (g3^2*g4^8*t^3.78)/g1^4 + g1^4*g2^2*t^3.82 + g2^2*g3^2*t^3.82 + (g1^8*g2^2*t^3.82)/g4^4 + (g1^4*g2^2*g3^2*t^3.82)/g4^4 + g2^2*g4^4*t^3.82 + (g2^2*g3^2*g4^4*t^3.82)/g1^4 + (g1^4*g2^4*t^3.86)/g4^4 + t^4.36/(g1^8*g2^4) + t^4.36/(g2^4*g3^4) + t^4.36/(g1^4*g2^4*g3^2) + (g1^7*t^5.43)/(g2*g3*g4) + (g1^3*g3*t^5.43)/(g2*g4) + (g3^3*t^5.43)/(g1*g2*g4) + (g1^3*g4^3*t^5.43)/(g2*g3) + (2*g3*g4^3*t^5.43)/(g1*g2) + (g3^3*g4^3*t^5.43)/(g1^5*g2) + (g4^7*t^5.43)/(g1*g2*g3) + (g3*g4^7*t^5.43)/(g1^5*g2) + (g3^3*g4^7*t^5.43)/(g1^9*g2) + (g1^7*g2*t^5.46)/(g3*g4^5) + (g1^3*g2*g3*t^5.46)/g4^5 + (2*g1^3*g2*t^5.46)/(g3*g4) + (2*g2*g3*t^5.46)/(g1*g4) + (g2*g4^3*t^5.46)/(g1*g3) + (g2*g3*g4^3*t^5.46)/g1^5 + t^5.47/(g1^2*g2^4*g3^4*g4^2) + t^5.47/(g1^6*g2^4*g3^2*g4^2) + (g1^7*g2^3*t^5.5)/(g3*g4^9) + (g1^3*g2^3*t^5.5)/(g3*g4^5) + (g2^3*t^5.5)/(g1*g3*g4) + (g4^4*t^5.96)/g2^2 + (g1^4*g4^4*t^5.96)/(g2^2*g3^2) + (g3^2*g4^4*t^5.96)/(g1^4*g2^2) + (g3^4*g4^4*t^5.96)/(g1^8*g2^2) - 4*t^6. - (g1^4*t^6.)/g3^2 - (g3^2*t^6.)/g1^4 - (g1^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g2^2*t^6.04)/g1^4 - (g2^2*t^6.04)/g3^2 - (g1^4*g2^2*t^6.04)/g4^8 - (g1^8*g2^2*t^6.04)/(g3^2*g4^8) - (g2^2*t^6.04)/g4^4 - (g1^4*g2^2*t^6.04)/(g3^2*g4^4) + t^6.54/(g1^12*g2^6) + t^6.54/(g2^6*g3^6) + t^6.54/(g1^4*g2^6*g3^4) + t^6.54/(g1^8*g2^6*g3^2) + t^6.58/(g1^4*g2^4*g3^4*g4^4) + (g1^2*t^7.07)/(g2^2*g4^2) + (2*g4^2*t^7.07)/(g1^2*g2^2) + (g1^2*g4^2*t^7.07)/(g2^2*g3^2) + (g3^2*g4^2*t^7.07)/(g1^6*g2^2) + (g4^6*t^7.07)/(g1^6*g2^2) + (g1^2*t^7.11)/g4^6 + (g1^6*t^7.11)/(g3^2*g4^6) + t^7.11/(g1^2*g4^2) + (g1^2*t^7.11)/(g3^2*g4^2) + (g4^2*t^7.11)/g1^6 + (g4^2*t^7.11)/(g1^2*g3^2) + (g1^2*g2^2*t^7.15)/(g3^2*g4^6) + g1^8*g3^4*t^7.56 + g1^8*g3^2*g4^4*t^7.56 + 2*g1^4*g3^4*g4^4*t^7.56 + g3^6*g4^4*t^7.56 + g1^8*g4^8*t^7.56 + 2*g1^4*g3^2*g4^8*t^7.56 + 4*g3^4*g4^8*t^7.56 + (2*g3^6*g4^8*t^7.56)/g1^4 + (g3^8*g4^8*t^7.56)/g1^8 + g3^2*g4^12*t^7.56 + (2*g3^4*g4^12*t^7.56)/g1^4 + (g3^6*g4^12*t^7.56)/g1^8 + (g3^4*g4^16*t^7.56)/g1^8 + g1^12*g2^2*t^7.6 + 3*g1^8*g2^2*g3^2*t^7.6 + 3*g1^4*g2^2*g3^4*t^7.6 + g2^2*g3^6*t^7.6 + (g1^12*g2^2*g3^2*t^7.6)/g4^4 + (g1^8*g2^2*g3^4*t^7.6)/g4^4 + g1^8*g2^2*g4^4*t^7.6 + 3*g1^4*g2^2*g3^2*g4^4*t^7.6 + 3*g2^2*g3^4*g4^4*t^7.6 + (g2^2*g3^6*g4^4*t^7.6)/g1^4 + g1^4*g2^2*g4^8*t^7.6 + 3*g2^2*g3^2*g4^8*t^7.6 + (3*g2^2*g3^4*g4^8*t^7.6)/g1^4 + (g2^2*g3^6*g4^8*t^7.6)/g1^8 + (g2^2*g3^2*g4^12*t^7.6)/g1^4 + (g2^2*g3^4*g4^12*t^7.6)/g1^8 + (g1^7*t^7.61)/(g2^3*g3^3*g4) + (g1^3*t^7.61)/(g2^3*g3*g4) + (g3*t^7.61)/(g1*g2^3*g4) + (g3^3*t^7.61)/(g1^5*g2^3*g4) + (g1^3*g4^3*t^7.61)/(g2^3*g3^3) + (g4^3*t^7.61)/(g1*g2^3*g3) + (g3*g4^3*t^7.61)/(g1^5*g2^3) + (g3^3*g4^3*t^7.61)/(g1^9*g2^3) + (g4^7*t^7.61)/(g1*g2^3*g3^3) + (g4^7*t^7.61)/(g1^5*g2^3*g3) + (g3*g4^7*t^7.61)/(g1^9*g2^3) + (g3^3*g4^7*t^7.61)/(g1^13*g2^3) + 2*g1^8*g2^4*t^7.64 + 3*g1^4*g2^4*g3^2*t^7.64 + 2*g2^4*g3^4*t^7.64 + (g1^16*g2^4*t^7.64)/g4^8 + (g1^12*g2^4*g3^2*t^7.64)/g4^8 + (g1^8*g2^4*g3^4*t^7.64)/g4^8 + (g1^12*g2^4*t^7.64)/g4^4 + (2*g1^8*g2^4*g3^2*t^7.64)/g4^4 + (g1^4*g2^4*g3^4*t^7.64)/g4^4 + g1^4*g2^4*g4^4*t^7.64 + 2*g2^4*g3^2*g4^4*t^7.64 + (g2^4*g3^4*g4^4*t^7.64)/g1^4 + g2^4*g4^8*t^7.64 + (g2^4*g3^2*g4^8*t^7.64)/g1^4 + (g2^4*g3^4*g4^8*t^7.64)/g1^8 - (g1^3*t^7.65)/(g2*g3*g4^5) + t^7.65/(g1^2*g2^6*g3^6*g4^2) + t^7.65/(g1^6*g2^6*g3^4*g4^2) + t^7.65/(g1^10*g2^6*g3^2*g4^2) - t^7.65/(g1*g2*g3*g4) - (g4^3*t^7.65)/(g1^5*g2*g3) + g1^4*g2^6*t^7.68 + g2^6*g3^2*t^7.68 + (g1^12*g2^6*t^7.68)/g4^8 + (g1^8*g2^6*g3^2*t^7.68)/g4^8 - (g1^3*g2*t^7.68)/(g3^3*g4^5) - (g2*t^7.68)/(g1*g3*g4^5) + (g1^8*g2^6*t^7.68)/g4^4 + (g1^4*g2^6*g3^2*t^7.68)/g4^4 + (g1^8*g2^8*t^7.71)/g4^8 - g1^9*g2*g3*g4*t^8.14 - g1^5*g2*g3^3*g4*t^8.14 - g1*g2*g3^5*g4*t^8.14 + (g4^4*t^8.14)/(g1^4*g2^4) + (g1^4*g4^4*t^8.14)/(g2^4*g3^4) + (g4^4*t^8.14)/(g2^4*g3^2) + (g3^2*g4^4*t^8.14)/(g1^8*g2^4) + (g3^4*g4^4*t^8.14)/(g1^12*g2^4) - g1^5*g2*g3*g4^5*t^8.14 - 2*g1*g2*g3^3*g4^5*t^8.14 - (g2*g3^5*g4^5*t^8.14)/g1^3 - g1*g2*g3*g4^9*t^8.14 - (g2*g3^3*g4^9*t^8.14)/g1^3 - (g2*g3^5*g4^9*t^8.14)/g1^7 - (g1^9*g2^3*g3*t^8.17)/g4^3 - (g1^5*g2^3*g3^3*t^8.17)/g4^3 - 2*g1^5*g2^3*g3*g4*t^8.17 - 2*g1*g2^3*g3^3*g4*t^8.17 - g1*g2^3*g3*g4^5*t^8.17 - (g2^3*g3^3*g4^5*t^8.17)/g1^3 - (4*t^8.18)/(g1^4*g2^2) - (g1^4*t^8.18)/(g2^2*g3^4) - (4*t^8.18)/(g2^2*g3^2) - (g3^2*t^8.18)/(g1^8*g2^2) - t^8.18/(g2^2*g4^4) - (g1^4*t^8.18)/(g2^2*g3^2*g4^4) - (g4^4*t^8.18)/(g1^8*g2^2) - (g4^4*t^8.18)/(g1^4*g2^2*g3^2) - (g1^9*g2^5*g3*t^8.21)/g4^7 - (g1^5*g2^5*g3*t^8.21)/g4^3 - g1*g2^5*g3*g4*t^8.21 - t^8.22/(g1^4*g3^2) - (g1^4*t^8.22)/(g3^2*g4^8) - t^8.22/(g3^2*g4^4) + t^8.72/(g1^16*g2^8) + t^8.72/(g2^8*g3^8) + t^8.72/(g1^4*g2^8*g3^6) + t^8.72/(g1^8*g2^8*g3^4) + t^8.72/(g1^12*g2^8*g3^2) + (g1^5*t^8.72)/(g2^3*g3^3*g4^3) + (g1*t^8.72)/(g2^3*g3*g4^3) + (g3*t^8.72)/(g1^3*g2^3*g4^3) + (g1*g4*t^8.72)/(g2^3*g3^3) + (2*g4*t^8.72)/(g1^3*g2^3*g3) + (g3*g4*t^8.72)/(g1^7*g2^3) + (g4^5*t^8.72)/(g1^3*g2^3*g3^3) + (g4^5*t^8.72)/(g1^7*g2^3*g3) + (g3*g4^5*t^8.72)/(g1^11*g2^3) + (g1^5*t^8.75)/(g2*g3^3*g4^7) + (g1*t^8.75)/(g2*g3*g4^7) + (2*g1*t^8.75)/(g2*g3^3*g4^3) + (2*t^8.75)/(g1^3*g2*g3*g4^3) + (g4*t^8.75)/(g1^3*g2*g3^3) + (g4*t^8.75)/(g1^7*g2*g3) + t^8.76/(g1^4*g2^6*g3^6*g4^4) + t^8.76/(g1^8*g2^6*g3^4*g4^4) + (g1^5*g2*t^8.79)/(g3^3*g4^11) + (g1*g2*t^8.79)/(g3^3*g4^7) + (g2*t^8.79)/(g1^3*g3^3*g4^3) - t^4.65/(g1*g2*g3*g4*y) - t^6.83/(g1*g2^3*g3^3*g4*y) - t^6.83/(g1^5*g2^3*g3*g4*y) + (g1*g2*g3*g4*t^7.35)/y + t^7.36/(g1^4*g2^4*g3^2*y) - t^7.94/(g1^3*g2^3*g3^3*g4^3*y) + (g1^3*g2*t^8.46)/(g3*g4*y) + (g2*g3*t^8.46)/(g1*g4*y) + t^8.47/(g1^2*g2^4*g3^4*g4^2*y) + t^8.47/(g1^6*g2^4*g3^2*g4^2*y) + (g1^4*t^8.96)/(g2^2*y) + (g3^2*t^8.96)/(g2^2*y) + (3*g4^4*t^8.96)/(g2^2*y) + (g1^4*g4^4*t^8.96)/(g2^2*g3^2*y) + (3*g3^2*g4^4*t^8.96)/(g1^4*g2^2*y) + (g3^4*g4^4*t^8.96)/(g1^8*g2^2*y) + (g4^8*t^8.96)/(g1^4*g2^2*y) + (g3^2*g4^8*t^8.96)/(g1^8*g2^2*y) - (t^4.65*y)/(g1*g2*g3*g4) - (t^6.83*y)/(g1*g2^3*g3^3*g4) - (t^6.83*y)/(g1^5*g2^3*g3*g4) + g1*g2*g3*g4*t^7.35*y + (t^7.36*y)/(g1^4*g2^4*g3^2) - (t^7.94*y)/(g1^3*g2^3*g3^3*g4^3) + (g1^3*g2*t^8.46*y)/(g3*g4) + (g2*g3*t^8.46*y)/(g1*g4) + (t^8.47*y)/(g1^2*g2^4*g3^4*g4^2) + (t^8.47*y)/(g1^6*g2^4*g3^2*g4^2) + (g1^4*t^8.96*y)/g2^2 + (g3^2*t^8.96*y)/g2^2 + (3*g4^4*t^8.96*y)/g2^2 + (g1^4*g4^4*t^8.96*y)/(g2^2*g3^2) + (3*g3^2*g4^4*t^8.96*y)/(g1^4*g2^2) + (g3^4*g4^4*t^8.96*y)/(g1^8*g2^2) + (g4^8*t^8.96*y)/(g1^4*g2^2) + (g3^2*g4^8*t^8.96*y)/(g1^8*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55655 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_3\tilde{q}_1$ 0.898 1.1046 0.813 [X:[], M:[0.7279, 0.715], q:[0.6361, 0.6361, 0.6387], qb:[0.6463, 0.6258, 0.6185], phi:[0.5496]] t^2.15 + t^2.18 + t^3.3 + t^3.73 + 2*t^3.76 + t^3.77 + 4*t^3.79 + 3*t^3.82 + 2*t^3.85 + t^4.29 + t^4.33 + t^4.37 + t^5.36 + t^5.38 + t^5.4 + 2*t^5.41 + t^5.42 + 2*t^5.43 + 3*t^5.44 + 6*t^5.47 + 2*t^5.48 + 3*t^5.5 + t^5.53 + t^5.88 + 2*t^5.91 + t^5.92 + 2*t^5.93 + t^5.96 - 7*t^6. - t^4.65/y - t^4.65*y detail