Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55638 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}q_{2}$ 0.691 0.8849 0.7809 [M:[1.1385, 0.7077, 0.8615, 0.8103, 0.7077, 0.8103, 0.759], q:[0.4051, 0.4564], qb:[0.8871, 0.7334], phi:[0.3795]] [M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [-11, -13], [7, 9], [-2, -2]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{2}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{7}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{6}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{1}\phi_{1}^{2}$ ${}$ -2 2*t^2.123 + 2*t^2.277 + 2*t^2.431 + t^2.585 + t^3.415 + t^4.031 + 3*t^4.246 + 4*t^4.4 + 7*t^4.554 + 6*t^4.708 + 6*t^4.862 + 2*t^5.015 + t^5.169 + 2*t^5.539 + t^5.692 - 2*t^6. + t^6.308 + 4*t^6.37 + 2*t^6.461 + 6*t^6.523 + t^6.615 + 12*t^6.677 + 15*t^6.831 + 16*t^6.985 + 12*t^7.138 + 8*t^7.292 + 3*t^7.446 + 3*t^7.662 + 2*t^7.816 + t^7.969 + t^8.061 - 6*t^8.123 - 6*t^8.277 - 10*t^8.431 + 5*t^8.493 - 3*t^8.585 + 8*t^8.647 + 17*t^8.8 + 4*t^8.892 + 24*t^8.954 - t^4.138/y - (2*t^6.262)/y - (2*t^6.415)/y - (2*t^6.569)/y + t^7.246/y + (4*t^7.4)/y + (5*t^7.554)/y + (8*t^7.708)/y + (5*t^7.862)/y + (4*t^8.015)/y - (3*t^8.385)/y - (2*t^8.539)/y - (5*t^8.692)/y - (2*t^8.846)/y - t^4.138*y - 2*t^6.262*y - 2*t^6.415*y - 2*t^6.569*y + t^7.246*y + 4*t^7.4*y + 5*t^7.554*y + 8*t^7.708*y + 5*t^7.862*y + 4*t^8.015*y - 3*t^8.385*y - 2*t^8.539*y - 5*t^8.692*y - 2*t^8.846*y t^2.123/(g1^11*g2^13) + g1^2*g2^4*t^2.123 + (2*t^2.277)/(g1^2*g2^2) + t^2.431/(g1^6*g2^8) + g1^7*g2^9*t^2.431 + g1^3*g2^3*t^2.585 + t^3.415/(g1^3*g2^3) + g1^7*g2^7*t^4.031 + t^4.246/(g1^22*g2^26) + t^4.246/(g1^9*g2^9) + g1^4*g2^8*t^4.246 + (2*t^4.4)/(g1^13*g2^15) + 2*g2^2*t^4.4 + t^4.554/(g1^17*g2^21) + (5*t^4.554)/(g1^4*g2^4) + g1^9*g2^13*t^4.554 + (3*t^4.708)/(g1^8*g2^10) + 3*g1^5*g2^7*t^4.708 + t^4.862/(g1^12*g2^16) + 4*g1*g2*t^4.862 + g1^14*g2^18*t^4.862 + t^5.015/(g1^3*g2^5) + g1^10*g2^12*t^5.015 + g1^6*g2^6*t^5.169 + t^5.539/(g1^14*g2^16) + (g2*t^5.539)/g1 + t^5.692/(g1^5*g2^5) - 2*t^6. + g1^5*g2^5*t^6.308 + t^6.37/(g1^33*g2^39) + t^6.37/(g1^20*g2^22) + t^6.37/(g1^7*g2^5) + g1^6*g2^12*t^6.37 + (g1*t^6.461)/g2 + g1^14*g2^16*t^6.461 + (2*t^6.523)/(g1^24*g2^28) + (2*t^6.523)/(g1^11*g2^11) + 2*g1^2*g2^6*t^6.523 + g1^10*g2^10*t^6.615 + (5*t^6.677)/g1^2 + t^6.677/(g1^28*g2^34) + (5*t^6.677)/(g1^15*g2^17) + g1^11*g2^17*t^6.677 + (3*t^6.831)/(g1^19*g2^23) + (9*t^6.831)/(g1^6*g2^6) + 3*g1^7*g2^11*t^6.831 + t^6.985/(g1^23*g2^29) + (7*t^6.985)/(g1^10*g2^12) + 7*g1^3*g2^5*t^6.985 + g1^16*g2^22*t^6.985 + (3*t^7.138)/(g1^14*g2^18) + (6*t^7.138)/(g1*g2) + 3*g1^12*g2^16*t^7.138 + t^7.292/(g1^18*g2^24) + (3*t^7.292)/(g1^5*g2^7) + 3*g1^8*g2^10*t^7.292 + g1^21*g2^27*t^7.292 + t^7.446/(g1^9*g2^13) + g1^4*g2^4*t^7.446 + g1^17*g2^21*t^7.446 + t^7.662/(g1^25*g2^29) + t^7.662/(g1^12*g2^12) + g1*g2^5*t^7.662 + t^7.816/(g1^16*g2^18) + t^7.816/(g1^3*g2) + t^7.969/(g1^7*g2^7) + g1^14*g2^14*t^8.061 - (3*t^8.123)/(g1^11*g2^13) - 3*g1^2*g2^4*t^8.123 - (6*t^8.277)/(g1^2*g2^2) - (5*t^8.431)/(g1^6*g2^8) - 5*g1^7*g2^9*t^8.431 + t^8.493/(g1^44*g2^52) + t^8.493/(g1^31*g2^35) + t^8.493/(g1^18*g2^18) + t^8.493/(g1^5*g2) + g1^8*g2^16*t^8.493 - 3*g1^3*g2^3*t^8.585 + (2*t^8.647)/(g1^35*g2^41) + (2*t^8.647)/(g1^22*g2^24) + (2*t^8.647)/(g1^9*g2^7) + 2*g1^4*g2^10*t^8.647 + t^8.8/(g1^39*g2^47) + (5*t^8.8)/(g1^26*g2^30) + (5*t^8.8)/(g1^13*g2^13) + 5*g2^4*t^8.8 + g1^13*g2^21*t^8.8 + t^8.892/(g1^5*g2^9) + 2*g1^8*g2^8*t^8.892 + g1^21*g2^25*t^8.892 + (3*t^8.954)/(g1^30*g2^36) + (9*t^8.954)/(g1^17*g2^19) + (9*t^8.954)/(g1^4*g2^2) + 3*g1^9*g2^15*t^8.954 - t^4.138/(g1*g2*y) - t^6.262/(g1^12*g2^14*y) - (g1*g2^3*t^6.262)/y - (2*t^6.415)/(g1^3*g2^3*y) - t^6.569/(g1^7*g2^9*y) - (g1^6*g2^8*t^6.569)/y + t^7.246/(g1^9*g2^9*y) + (2*t^7.4)/(g1^13*g2^15*y) + (2*g2^2*t^7.4)/y + t^7.554/(g1^17*g2^21*y) + (3*t^7.554)/(g1^4*g2^4*y) + (g1^9*g2^13*t^7.554)/y + (4*t^7.708)/(g1^8*g2^10*y) + (4*g1^5*g2^7*t^7.708)/y + (5*g1*g2*t^7.862)/y + (2*t^8.015)/(g1^3*g2^5*y) + (2*g1^10*g2^12*t^8.015)/y - t^8.385/(g1^23*g2^27*y) - t^8.385/(g1^10*g2^10*y) - (g1^3*g2^7*t^8.385)/y - t^8.539/(g1^14*g2^16*y) - (g2*t^8.539)/(g1*y) - t^8.692/(g1^18*g2^22*y) - (3*t^8.692)/(g1^5*g2^5*y) - (g1^8*g2^12*t^8.692)/y - t^8.846/(g1^9*g2^11*y) - (g1^4*g2^6*t^8.846)/y - (t^4.138*y)/(g1*g2) - (t^6.262*y)/(g1^12*g2^14) - g1*g2^3*t^6.262*y - (2*t^6.415*y)/(g1^3*g2^3) - (t^6.569*y)/(g1^7*g2^9) - g1^6*g2^8*t^6.569*y + (t^7.246*y)/(g1^9*g2^9) + (2*t^7.4*y)/(g1^13*g2^15) + 2*g2^2*t^7.4*y + (t^7.554*y)/(g1^17*g2^21) + (3*t^7.554*y)/(g1^4*g2^4) + g1^9*g2^13*t^7.554*y + (4*t^7.708*y)/(g1^8*g2^10) + 4*g1^5*g2^7*t^7.708*y + 5*g1*g2*t^7.862*y + (2*t^8.015*y)/(g1^3*g2^5) + 2*g1^10*g2^12*t^8.015*y - (t^8.385*y)/(g1^23*g2^27) - (t^8.385*y)/(g1^10*g2^10) - g1^3*g2^7*t^8.385*y - (t^8.539*y)/(g1^14*g2^16) - (g2*t^8.539*y)/g1 - (t^8.692*y)/(g1^18*g2^22) - (3*t^8.692*y)/(g1^5*g2^5) - g1^8*g2^12*t^8.692*y - (t^8.846*y)/(g1^9*g2^11) - g1^4*g2^6*t^8.846*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47088 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ 0.6724 0.8509 0.7902 [M:[1.1435, 0.7153, 0.8565, 0.8094, 0.7153, 0.8094], q:[0.4047, 0.4518], qb:[0.88, 0.7388], phi:[0.3812]] 2*t^2.146 + t^2.287 + 2*t^2.428 + t^2.569 + t^3.431 + t^3.713 + t^3.995 + 3*t^4.292 + 2*t^4.433 + 5*t^4.574 + 4*t^4.715 + 5*t^4.856 + 2*t^4.998 + t^5.139 + 2*t^5.576 + 2*t^5.859 - t^6. - t^4.144/y - t^4.144*y detail