Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3892 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ 0.691 0.8849 0.7809 [X:[1.6205], M:[0.7077, 0.8103, 0.3795, 1.1385, 0.8615, 0.8103, 0.759, 0.7077], q:[0.8871, 0.4051], qb:[0.7334, 0.4564], phi:[0.3795]] [X:[[0, 1]], M:[[2, -10], [-2, 6], [0, -1], [0, -3], [0, 3], [2, -5], [0, -2], [-2, 1]], q:[[-1, 7], [-1, 3]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{8}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{8}$, ${ }M_{1}M_{5}$, ${ }M_{6}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$ ${}$ -2 2*t^2.123 + 2*t^2.277 + 2*t^2.431 + t^2.585 + t^3.415 + t^4.031 + 3*t^4.246 + 4*t^4.4 + 7*t^4.554 + 6*t^4.708 + 6*t^4.862 + 2*t^5.015 + t^5.169 + 2*t^5.539 + t^5.692 - 2*t^6. + t^6.308 + 4*t^6.37 + 2*t^6.461 + 6*t^6.523 + t^6.615 + 12*t^6.677 + 15*t^6.831 + 16*t^6.985 + 12*t^7.138 + 8*t^7.292 + 3*t^7.446 + 3*t^7.662 + 2*t^7.816 + t^7.969 + t^8.061 - 6*t^8.123 - 6*t^8.277 - 10*t^8.431 + 5*t^8.493 - 3*t^8.585 + 8*t^8.647 + 17*t^8.8 + 4*t^8.892 + 24*t^8.954 - t^4.138/y - (2*t^6.262)/y - (2*t^6.415)/y - (2*t^6.569)/y + t^7.246/y + (4*t^7.4)/y + (5*t^7.554)/y + (8*t^7.708)/y + (5*t^7.862)/y + (4*t^8.015)/y - (3*t^8.385)/y - (2*t^8.539)/y - (5*t^8.692)/y - (2*t^8.846)/y - t^4.138*y - 2*t^6.262*y - 2*t^6.415*y - 2*t^6.569*y + t^7.246*y + 4*t^7.4*y + 5*t^7.554*y + 8*t^7.708*y + 5*t^7.862*y + 4*t^8.015*y - 3*t^8.385*y - 2*t^8.539*y - 5*t^8.692*y - 2*t^8.846*y (g1^2*t^2.123)/g2^10 + (g2*t^2.123)/g1^2 + (2*t^2.277)/g2^2 + (g1^2*t^2.431)/g2^5 + (g2^6*t^2.431)/g1^2 + g2^3*t^2.585 + t^3.415/g2^3 + g2^7*t^4.031 + (g1^4*t^4.246)/g2^20 + t^4.246/g2^9 + (g2^2*t^4.246)/g1^4 + (2*g1^2*t^4.4)/g2^12 + (2*t^4.4)/(g1^2*g2) + (g1^4*t^4.554)/g2^15 + (5*t^4.554)/g2^4 + (g2^7*t^4.554)/g1^4 + (3*g1^2*t^4.708)/g2^7 + (3*g2^4*t^4.708)/g1^2 + (g1^4*t^4.862)/g2^10 + 4*g2*t^4.862 + (g2^12*t^4.862)/g1^4 + (g1^2*t^5.015)/g2^2 + (g2^9*t^5.015)/g1^2 + g2^6*t^5.169 + (g1^2*t^5.539)/g2^13 + t^5.539/(g1^2*g2^2) + t^5.692/g2^5 - 2*t^6. + g2^5*t^6.308 + (g1^6*t^6.37)/g2^30 + (g1^2*t^6.37)/g2^19 + t^6.37/(g1^2*g2^8) + (g2^3*t^6.37)/g1^6 + g1^2*g2^2*t^6.461 + (g2^13*t^6.461)/g1^2 + (2*t^6.523)/g1^4 + (2*g1^4*t^6.523)/g2^22 + (2*t^6.523)/g2^11 + g2^10*t^6.615 + (g1^6*t^6.677)/g2^25 + (5*g1^2*t^6.677)/g2^14 + (5*t^6.677)/(g1^2*g2^3) + (g2^8*t^6.677)/g1^6 + (3*g1^4*t^6.831)/g2^17 + (9*t^6.831)/g2^6 + (3*g2^5*t^6.831)/g1^4 + (g1^6*t^6.985)/g2^20 + (7*g1^2*t^6.985)/g2^9 + (7*g2^2*t^6.985)/g1^2 + (g2^13*t^6.985)/g1^6 + (3*g1^4*t^7.138)/g2^12 + (6*t^7.138)/g2 + (3*g2^10*t^7.138)/g1^4 + (g1^6*t^7.292)/g2^15 + (3*g1^2*t^7.292)/g2^4 + (3*g2^7*t^7.292)/g1^2 + (g2^18*t^7.292)/g1^6 + (g1^4*t^7.446)/g2^7 + g2^4*t^7.446 + (g2^15*t^7.446)/g1^4 + (g1^4*t^7.662)/g2^23 + t^7.662/g2^12 + t^7.662/(g1^4*g2) + (g1^2*t^7.816)/g2^15 + t^7.816/(g1^2*g2^4) + t^7.969/g2^7 + g2^14*t^8.061 - (3*g1^2*t^8.123)/g2^10 - (3*g2*t^8.123)/g1^2 - (6*t^8.277)/g2^2 - (5*g1^2*t^8.431)/g2^5 - (5*g2^6*t^8.431)/g1^2 + (g1^8*t^8.493)/g2^40 + (g1^4*t^8.493)/g2^29 + t^8.493/g2^18 + t^8.493/(g1^4*g2^7) + (g2^4*t^8.493)/g1^8 - 3*g2^3*t^8.585 + (2*g1^6*t^8.647)/g2^32 + (2*g1^2*t^8.647)/g2^21 + (2*t^8.647)/(g1^2*g2^10) + (2*g2*t^8.647)/g1^6 + (g1^8*t^8.8)/g2^35 + (5*g1^4*t^8.8)/g2^24 + (5*t^8.8)/g2^13 + (5*t^8.8)/(g1^4*g2^2) + (g2^9*t^8.8)/g1^8 + (g1^4*t^8.892)/g2^3 + 2*g2^8*t^8.892 + (g2^19*t^8.892)/g1^4 + (3*g1^6*t^8.954)/g2^27 + (9*g1^2*t^8.954)/g2^16 + (9*t^8.954)/(g1^2*g2^5) + (3*g2^6*t^8.954)/g1^6 - t^4.138/(g2*y) - t^6.262/(g1^2*y) - (g1^2*t^6.262)/(g2^11*y) - (2*t^6.415)/(g2^3*y) - (g1^2*t^6.569)/(g2^6*y) - (g2^5*t^6.569)/(g1^2*y) + t^7.246/(g2^9*y) + (2*g1^2*t^7.4)/(g2^12*y) + (2*t^7.4)/(g1^2*g2*y) + (g1^4*t^7.554)/(g2^15*y) + (3*t^7.554)/(g2^4*y) + (g2^7*t^7.554)/(g1^4*y) + (4*g1^2*t^7.708)/(g2^7*y) + (4*g2^4*t^7.708)/(g1^2*y) + (5*g2*t^7.862)/y + (2*g1^2*t^8.015)/(g2^2*y) + (2*g2^9*t^8.015)/(g1^2*y) - (g1^4*t^8.385)/(g2^21*y) - t^8.385/(g2^10*y) - (g2*t^8.385)/(g1^4*y) - (g1^2*t^8.539)/(g2^13*y) - t^8.539/(g1^2*g2^2*y) - (g1^4*t^8.692)/(g2^16*y) - (3*t^8.692)/(g2^5*y) - (g2^6*t^8.692)/(g1^4*y) - (g1^2*t^8.846)/(g2^8*y) - (g2^3*t^8.846)/(g1^2*y) - (t^4.138*y)/g2 - (t^6.262*y)/g1^2 - (g1^2*t^6.262*y)/g2^11 - (2*t^6.415*y)/g2^3 - (g1^2*t^6.569*y)/g2^6 - (g2^5*t^6.569*y)/g1^2 + (t^7.246*y)/g2^9 + (2*g1^2*t^7.4*y)/g2^12 + (2*t^7.4*y)/(g1^2*g2) + (g1^4*t^7.554*y)/g2^15 + (3*t^7.554*y)/g2^4 + (g2^7*t^7.554*y)/g1^4 + (4*g1^2*t^7.708*y)/g2^7 + (4*g2^4*t^7.708*y)/g1^2 + 5*g2*t^7.862*y + (2*g1^2*t^8.015*y)/g2^2 + (2*g2^9*t^8.015*y)/g1^2 - (g1^4*t^8.385*y)/g2^21 - (t^8.385*y)/g2^10 - (g2*t^8.385*y)/g1^4 - (g1^2*t^8.539*y)/g2^13 - (t^8.539*y)/(g1^2*g2^2) - (g1^4*t^8.692*y)/g2^16 - (3*t^8.692*y)/g2^5 - (g2^6*t^8.692*y)/g1^4 - (g1^2*t^8.846*y)/g2^8 - (g2^3*t^8.846*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3407 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6708 0.8471 0.7919 [X:[1.6178], M:[0.7084, 0.8203, 0.3822, 1.1466, 0.8534, 0.7975, 0.7644], q:[0.8814, 0.4101], qb:[0.7364, 0.4433], phi:[0.3822]] t^2.125 + 2*t^2.293 + t^2.393 + t^2.461 + t^2.56 + t^3.44 + t^3.806 + t^3.974 + t^4.251 + 2*t^4.418 + t^4.518 + 4*t^4.586 + 3*t^4.686 + 2*t^4.754 + t^4.785 + 4*t^4.853 + t^4.922 + t^4.953 + t^5.021 + t^5.121 + t^5.565 + t^5.733 + t^5.932 - 2*t^6. - t^4.147/y - t^4.147*y detail