Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5466 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ 0.691 0.8849 0.7809 [X:[1.3435], M:[0.7077, 0.8103, 0.6565, 0.8615, 1.1385, 0.759, 0.8103, 0.7077], q:[0.8871, 0.4051], qb:[0.4564, 0.7334], phi:[0.3795]] [X:[[28]], M:[[-18], [2], [-28], [12], [-12], [-8], [2], [-18]], q:[[17], [1]], qb:[[11], [-13]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{8}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{7}$, ${ }M_{4}$, ${ }M_{5}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}^{2}$ ${}$ -2 2*t^2.123 + 2*t^2.277 + 2*t^2.431 + t^2.585 + t^3.415 + t^4.031 + 3*t^4.246 + 4*t^4.4 + 7*t^4.554 + 6*t^4.708 + 6*t^4.862 + 2*t^5.015 + t^5.169 + 2*t^5.539 + t^5.692 - 2*t^6. + t^6.308 + 4*t^6.37 + 2*t^6.461 + 6*t^6.523 + t^6.615 + 12*t^6.677 + 15*t^6.831 + 16*t^6.985 + 12*t^7.138 + 8*t^7.292 + 3*t^7.446 + 3*t^7.662 + 2*t^7.816 + t^7.969 + t^8.061 - 6*t^8.123 - 6*t^8.277 - 10*t^8.431 + 5*t^8.493 - 3*t^8.585 + 8*t^8.647 + 17*t^8.8 + 4*t^8.892 + 24*t^8.954 - t^4.138/y - (2*t^6.262)/y - (2*t^6.415)/y - (2*t^6.569)/y + t^7.246/y + (4*t^7.4)/y + (5*t^7.554)/y + (8*t^7.708)/y + (5*t^7.862)/y + (4*t^8.015)/y - (3*t^8.385)/y - (2*t^8.539)/y - (5*t^8.692)/y - (2*t^8.846)/y - t^4.138*y - 2*t^6.262*y - 2*t^6.415*y - 2*t^6.569*y + t^7.246*y + 4*t^7.4*y + 5*t^7.554*y + 8*t^7.708*y + 5*t^7.862*y + 4*t^8.015*y - 3*t^8.385*y - 2*t^8.539*y - 5*t^8.692*y - 2*t^8.846*y (2*t^2.123)/g1^18 + (2*t^2.277)/g1^8 + 2*g1^2*t^2.431 + g1^12*t^2.585 + t^3.415/g1^12 + g1^28*t^4.031 + (3*t^4.246)/g1^36 + (4*t^4.4)/g1^26 + (7*t^4.554)/g1^16 + (6*t^4.708)/g1^6 + 6*g1^4*t^4.862 + 2*g1^14*t^5.015 + g1^24*t^5.169 + (2*t^5.539)/g1^30 + t^5.692/g1^20 - 2*t^6. + g1^20*t^6.308 + (4*t^6.37)/g1^54 + 2*g1^30*t^6.461 + (6*t^6.523)/g1^44 + g1^40*t^6.615 + (12*t^6.677)/g1^34 + (15*t^6.831)/g1^24 + (16*t^6.985)/g1^14 + (12*t^7.138)/g1^4 + 8*g1^6*t^7.292 + 3*g1^16*t^7.446 + (3*t^7.662)/g1^48 + (2*t^7.816)/g1^38 + t^7.969/g1^28 + g1^56*t^8.061 - (6*t^8.123)/g1^18 - (6*t^8.277)/g1^8 - 10*g1^2*t^8.431 + (5*t^8.493)/g1^72 - 3*g1^12*t^8.585 + (8*t^8.647)/g1^62 + (17*t^8.8)/g1^52 + 4*g1^32*t^8.892 + (24*t^8.954)/g1^42 - t^4.138/(g1^4*y) - (2*t^6.262)/(g1^22*y) - (2*t^6.415)/(g1^12*y) - (2*t^6.569)/(g1^2*y) + t^7.246/(g1^36*y) + (4*t^7.4)/(g1^26*y) + (5*t^7.554)/(g1^16*y) + (8*t^7.708)/(g1^6*y) + (5*g1^4*t^7.862)/y + (4*g1^14*t^8.015)/y - (3*t^8.385)/(g1^40*y) - (2*t^8.539)/(g1^30*y) - (5*t^8.692)/(g1^20*y) - (2*t^8.846)/(g1^10*y) - (t^4.138*y)/g1^4 - (2*t^6.262*y)/g1^22 - (2*t^6.415*y)/g1^12 - (2*t^6.569*y)/g1^2 + (t^7.246*y)/g1^36 + (4*t^7.4*y)/g1^26 + (5*t^7.554*y)/g1^16 + (8*t^7.708*y)/g1^6 + 5*g1^4*t^7.862*y + 4*g1^14*t^8.015*y - (3*t^8.385*y)/g1^40 - (2*t^8.539*y)/g1^30 - (5*t^8.692*y)/g1^20 - (2*t^8.846*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3874 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.6707 0.8463 0.7925 [X:[1.3285], M:[0.7174, 0.8092, 0.6715, 0.8551, 1.1449, 0.7633, 0.8092], q:[0.878, 0.4046], qb:[0.4505, 0.7404], phi:[0.3816]] t^2.152 + 2*t^2.29 + 2*t^2.428 + t^2.565 + t^3.435 + t^3.848 + t^3.985 + t^4.304 + 2*t^4.442 + 5*t^4.58 + 5*t^4.717 + 6*t^4.855 + 2*t^4.993 + t^5.13 + t^5.587 + t^5.725 - t^6. - t^4.145/y - t^4.145*y detail