Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55701 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_2q_3$ + $ M_3\phi_1^2$ | 0.8953 | 1.1197 | 0.7996 | [X:[], M:[0.6948, 0.6948, 0.8627], q:[0.5895, 0.7157, 0.7157], qb:[0.5682, 0.5682, 0.5682], phi:[0.5686]] | [X:[], M:[[-4, -3, 1, 1, 1], [-3, -4, 1, 1, 1], [2, 2, 0, 0, 0]], q:[[3, 3, -1, -1, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[-1, -1, 0, 0, 0]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ M_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2q_3$, $ M_2M_3$, $ M_1M_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ | $\phi_1q_2^2$, $ \phi_1q_3^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$ | -8 | 2*t^2.08 + t^2.59 + 3*t^3.41 + 3*t^3.47 + 6*t^3.85 + 3*t^4.17 + t^4.29 + 2*t^4.67 + 6*t^5.12 + 4*t^5.18 + t^5.24 + 6*t^5.49 + 6*t^5.56 + 9*t^5.94 - 8*t^6. + 4*t^6.25 + 3*t^6.76 + 6*t^6.82 + 9*t^6.88 + 6*t^6.95 + 12*t^7.2 + 18*t^7.26 + 12*t^7.32 + 9*t^7.58 + 6*t^7.64 + 21*t^7.7 - 10*t^7.71 + t^7.76 - 3*t^7.77 + 12*t^8.02 - 16*t^8.08 - 2*t^8.21 + 5*t^8.34 + 24*t^8.52 - 9*t^8.53 + 14*t^8.59 + 9*t^8.65 + 3*t^8.72 + 4*t^8.84 + 12*t^8.9 + 36*t^8.97 - t^4.71/y - (2*t^6.79)/y + t^7.17/y + (2*t^7.67)/y + (6*t^8.49)/y + (6*t^8.56)/y + (2*t^8.62)/y - (3*t^8.87)/y + (12*t^8.94)/y - t^4.71*y - 2*t^6.79*y + t^7.17*y + 2*t^7.67*y + 6*t^8.49*y + 6*t^8.56*y + 2*t^8.62*y - 3*t^8.87*y + 12*t^8.94*y | (g3*g4*g5*t^2.08)/(g1^3*g2^4) + (g3*g4*g5*t^2.08)/(g1^4*g2^3) + g1^2*g2^2*t^2.59 + g3*g4*t^3.41 + g3*g5*t^3.41 + g4*g5*t^3.41 + (g1^3*g2^3*t^3.47)/(g3*g4) + (g1^3*g2^3*t^3.47)/(g3*g5) + (g1^3*g2^3*t^3.47)/(g4*g5) + g1*g3*t^3.85 + g2*g3*t^3.85 + g1*g4*t^3.85 + g2*g4*t^3.85 + g1*g5*t^3.85 + g2*g5*t^3.85 + (g3^2*g4^2*g5^2*t^4.17)/(g1^6*g2^8) + (g3^2*g4^2*g5^2*t^4.17)/(g1^7*g2^7) + (g3^2*g4^2*g5^2*t^4.17)/(g1^8*g2^6) + g1*g2*t^4.29 + (g3*g4*g5*t^4.67)/(g1*g2^2) + (g3*g4*g5*t^4.67)/(g1^2*g2) + (g3^2*t^5.12)/(g1*g2) + (g3*g4*t^5.12)/(g1*g2) + (g4^2*t^5.12)/(g1*g2) + (g3*g5*t^5.12)/(g1*g2) + (g4*g5*t^5.12)/(g1*g2) + (g5^2*t^5.12)/(g1*g2) + g1^4*g2^4*t^5.18 + (g1^2*g2^2*t^5.18)/(g3*g4) + (g1^2*g2^2*t^5.18)/(g3*g5) + (g1^2*g2^2*t^5.18)/(g4*g5) + (g1^5*g2^5*t^5.24)/(g3^2*g4^2*g5^2) + (g3^2*g4^2*g5*t^5.49)/(g1^3*g2^4) + (g3^2*g4^2*g5*t^5.49)/(g1^4*g2^3) + (g3^2*g4*g5^2*t^5.49)/(g1^3*g2^4) + (g3^2*g4*g5^2*t^5.49)/(g1^4*g2^3) + (g3*g4^2*g5^2*t^5.49)/(g1^3*g2^4) + (g3*g4^2*g5^2*t^5.49)/(g1^4*g2^3) + (g3*t^5.56)/g1 + (g3*t^5.56)/g2 + (g4*t^5.56)/g1 + (g4*t^5.56)/g2 + (g5*t^5.56)/g1 + (g5*t^5.56)/g2 + (g3^2*g4*g5*t^5.94)/(g1^2*g2^4) + (g3^2*g4*g5*t^5.94)/(g1^3*g2^3) + (g3^2*g4*g5*t^5.94)/(g1^4*g2^2) + (g3*g4^2*g5*t^5.94)/(g1^2*g2^4) + (g3*g4^2*g5*t^5.94)/(g1^3*g2^3) + (g3*g4^2*g5*t^5.94)/(g1^4*g2^2) + (g3*g4*g5^2*t^5.94)/(g1^2*g2^4) + (g3*g4*g5^2*t^5.94)/(g1^3*g2^3) + (g3*g4*g5^2*t^5.94)/(g1^4*g2^2) - 5*t^6. - (g3*t^6.)/g4 - (g4*t^6.)/g3 + g1^2*g2^2*g3*g4*t^6. - (g3*t^6.)/g5 - (g4*t^6.)/g5 - (g5*t^6.)/g3 + g1^2*g2^2*g3*g5*t^6. - (g5*t^6.)/g4 + g1^2*g2^2*g4*g5*t^6. + (g1^5*g2^5*t^6.06)/(g3*g4) - (g1^3*g2^3*t^6.06)/(g3*g4*g5^2) + (g1^5*g2^5*t^6.06)/(g3*g5) - (g1^3*g2^3*t^6.06)/(g3*g4^2*g5) + (g1^5*g2^5*t^6.06)/(g4*g5) - (g1^3*g2^3*t^6.06)/(g3^2*g4*g5) + (g3^3*g4^3*g5^3*t^6.25)/(g1^9*g2^12) + (g3^3*g4^3*g5^3*t^6.25)/(g1^10*g2^11) + (g3^3*g4^3*g5^3*t^6.25)/(g1^11*g2^10) + (g3^3*g4^3*g5^3*t^6.25)/(g1^12*g2^9) - (g1*t^6.44)/g3 - (g2*t^6.44)/g3 + g1^3*g2^2*g3*t^6.44 + g1^2*g2^3*g3*t^6.44 - (g1*t^6.44)/g4 - (g2*t^6.44)/g4 + g1^3*g2^2*g4*t^6.44 + g1^2*g2^3*g4*t^6.44 - (g1*t^6.44)/g5 - (g2*t^6.44)/g5 + g1^3*g2^2*g5*t^6.44 + g1^2*g2^3*g5*t^6.44 + (g3^2*g4^2*g5^2*t^6.76)/(g1^4*g2^6) + (g3^2*g4^2*g5^2*t^6.76)/(g1^5*g2^5) + (g3^2*g4^2*g5^2*t^6.76)/(g1^6*g2^4) + g3^2*g4^2*t^6.82 + g3^2*g4*g5*t^6.82 + g3*g4^2*g5*t^6.82 + g3^2*g5^2*t^6.82 + g3*g4*g5^2*t^6.82 + g4^2*g5^2*t^6.82 + 3*g1^3*g2^3*t^6.88 + (g1^3*g2^3*g3*t^6.88)/g4 + (g1^3*g2^3*g4*t^6.88)/g3 + (g1^3*g2^3*g3*t^6.88)/g5 + (g1^3*g2^3*g4*t^6.88)/g5 + (g1^3*g2^3*g5*t^6.88)/g3 + (g1^3*g2^3*g5*t^6.88)/g4 + (g1^6*g2^6*t^6.95)/(g3^2*g4^2) + (g1^6*g2^6*t^6.95)/(g3^2*g5^2) + (g1^6*g2^6*t^6.95)/(g4^2*g5^2) + (g1^6*g2^6*t^6.95)/(g3*g4*g5^2) + (g1^6*g2^6*t^6.95)/(g3*g4^2*g5) + (g1^6*g2^6*t^6.95)/(g3^2*g4*g5) + (g3^3*g4*g5*t^7.2)/(g1^4*g2^5) + (g3^3*g4*g5*t^7.2)/(g1^5*g2^4) + (g3^2*g4^2*g5*t^7.2)/(g1^4*g2^5) + (g3^2*g4^2*g5*t^7.2)/(g1^5*g2^4) + (g3*g4^3*g5*t^7.2)/(g1^4*g2^5) + (g3*g4^3*g5*t^7.2)/(g1^5*g2^4) + (g3^2*g4*g5^2*t^7.2)/(g1^4*g2^5) + (g3^2*g4*g5^2*t^7.2)/(g1^5*g2^4) + (g3*g4^2*g5^2*t^7.2)/(g1^4*g2^5) + (g3*g4^2*g5^2*t^7.2)/(g1^5*g2^4) + (g3*g4*g5^3*t^7.2)/(g1^4*g2^5) + (g3*g4*g5^3*t^7.2)/(g1^5*g2^4) + g1*g3^2*g4*t^7.26 + g2*g3^2*g4*t^7.26 + g1*g3*g4^2*t^7.26 + g2*g3*g4^2*t^7.26 + g1*g3^2*g5*t^7.26 + g2*g3^2*g5*t^7.26 + 3*g1*g3*g4*g5*t^7.26 + 3*g2*g3*g4*g5*t^7.26 + g1*g4^2*g5*t^7.26 + g2*g4^2*g5*t^7.26 + g1*g3*g5^2*t^7.26 + g2*g3*g5^2*t^7.26 + g1*g4*g5^2*t^7.26 + g2*g4*g5^2*t^7.26 + (g1^4*g2^3*t^7.32)/g3 + (g1^3*g2^4*t^7.32)/g3 + (g1^4*g2^3*t^7.32)/g4 + (g1^3*g2^4*t^7.32)/g4 + (g1^4*g2^3*t^7.32)/g5 + (g1^3*g2^4*t^7.32)/g5 + (g1^4*g2^3*g3*t^7.32)/(g4*g5) + (g1^3*g2^4*g3*t^7.32)/(g4*g5) + (g1^4*g2^3*g4*t^7.32)/(g3*g5) + (g1^3*g2^4*g4*t^7.32)/(g3*g5) + (g1^4*g2^3*g5*t^7.32)/(g3*g4) + (g1^3*g2^4*g5*t^7.32)/(g3*g4) + (g3^3*g4^3*g5^2*t^7.58)/(g1^6*g2^8) + (g3^3*g4^3*g5^2*t^7.58)/(g1^7*g2^7) + (g3^3*g4^3*g5^2*t^7.58)/(g1^8*g2^6) + (g3^3*g4^2*g5^3*t^7.58)/(g1^6*g2^8) + (g3^3*g4^2*g5^3*t^7.58)/(g1^7*g2^7) + (g3^3*g4^2*g5^3*t^7.58)/(g1^8*g2^6) + (g3^2*g4^3*g5^3*t^7.58)/(g1^6*g2^8) + (g3^2*g4^3*g5^3*t^7.58)/(g1^7*g2^7) + (g3^2*g4^3*g5^3*t^7.58)/(g1^8*g2^6) + (g3^2*g4*g5*t^7.64)/(g1^3*g2^5) + (g3^2*g4*g5*t^7.64)/(g1^5*g2^3) + (g3*g4^2*g5*t^7.64)/(g1^3*g2^5) + (g3*g4^2*g5*t^7.64)/(g1^5*g2^3) + (g3*g4*g5^2*t^7.64)/(g1^3*g2^5) + (g3*g4*g5^2*t^7.64)/(g1^5*g2^3) + g1^2*g3^2*t^7.7 + g1*g2*g3^2*t^7.7 + g2^2*g3^2*t^7.7 + g1^2*g3*g4*t^7.7 + 2*g1*g2*g3*g4*t^7.7 + g2^2*g3*g4*t^7.7 + g1^2*g4^2*t^7.7 + g1*g2*g4^2*t^7.7 + g2^2*g4^2*t^7.7 + g1^2*g3*g5*t^7.7 + 2*g1*g2*g3*g5*t^7.7 + g2^2*g3*g5*t^7.7 + g1^2*g4*g5*t^7.7 + 2*g1*g2*g4*g5*t^7.7 + g2^2*g4*g5*t^7.7 + g1^2*g5^2*t^7.7 + g1*g2*g5^2*t^7.7 + g2^2*g5^2*t^7.7 - (4*t^7.71)/(g1*g2) - (g3*t^7.71)/(g1*g2*g4) - (g4*t^7.71)/(g1*g2*g3) - (g3*t^7.71)/(g1*g2*g5) - (g4*t^7.71)/(g1*g2*g5) - (g5*t^7.71)/(g1*g2*g3) - (g5*t^7.71)/(g1*g2*g4) + g1^6*g2^6*t^7.76 - (g1^2*g2^2*t^7.77)/(g3*g4*g5^2) - (g1^2*g2^2*t^7.77)/(g3*g4^2*g5) - (g1^2*g2^2*t^7.77)/(g3^2*g4*g5) + (g3^3*g4^2*g5^2*t^8.02)/(g1^5*g2^8) + (g3^3*g4^2*g5^2*t^8.02)/(g1^6*g2^7) + (g3^3*g4^2*g5^2*t^8.02)/(g1^7*g2^6) + (g3^3*g4^2*g5^2*t^8.02)/(g1^8*g2^5) + (g3^2*g4^3*g5^2*t^8.02)/(g1^5*g2^8) + (g3^2*g4^3*g5^2*t^8.02)/(g1^6*g2^7) + (g3^2*g4^3*g5^2*t^8.02)/(g1^7*g2^6) + (g3^2*g4^3*g5^2*t^8.02)/(g1^8*g2^5) + (g3^2*g4^2*g5^3*t^8.02)/(g1^5*g2^8) + (g3^2*g4^2*g5^3*t^8.02)/(g1^6*g2^7) + (g3^2*g4^2*g5^3*t^8.02)/(g1^7*g2^6) + (g3^2*g4^2*g5^3*t^8.02)/(g1^8*g2^5) - (g3^2*g4*t^8.08)/(g1^3*g2^4) - (g3^2*g4*t^8.08)/(g1^4*g2^3) - (g3*g4^2*t^8.08)/(g1^3*g2^4) - (g3*g4^2*t^8.08)/(g1^4*g2^3) - (g3^2*g5*t^8.08)/(g1^3*g2^4) - (g3^2*g5*t^8.08)/(g1^4*g2^3) - (5*g3*g4*g5*t^8.08)/(g1^3*g2^4) - (5*g3*g4*g5*t^8.08)/(g1^4*g2^3) - (g4^2*g5*t^8.08)/(g1^3*g2^4) - (g4^2*g5*t^8.08)/(g1^4*g2^3) + (g3^2*g4^2*g5*t^8.08)/(g1*g2^2) + (g3^2*g4^2*g5*t^8.08)/(g1^2*g2) - (g3*g5^2*t^8.08)/(g1^3*g2^4) - (g3*g5^2*t^8.08)/(g1^4*g2^3) - (g4*g5^2*t^8.08)/(g1^3*g2^4) - (g4*g5^2*t^8.08)/(g1^4*g2^3) + (g3^2*g4*g5^2*t^8.08)/(g1*g2^2) + (g3^2*g4*g5^2*t^8.08)/(g1^2*g2) + (g3*g4^2*g5^2*t^8.08)/(g1*g2^2) + (g3*g4^2*g5^2*t^8.08)/(g1^2*g2) - t^8.15/(g1*g3) - t^8.15/(g2*g3) + g1^2*g2*g3*t^8.15 + g1*g2^2*g3*t^8.15 - t^8.15/(g1*g4) - t^8.15/(g2*g4) + g1^2*g2*g4*t^8.15 + g1*g2^2*g4*t^8.15 - t^8.15/(g1*g5) - t^8.15/(g2*g5) + g1^2*g2*g5*t^8.15 + g1*g2^2*g5*t^8.15 - (g1^5*g2^4*t^8.21)/(g3*g4*g5) - (g1^4*g2^5*t^8.21)/(g3*g4*g5) + (g3^4*g4^4*g5^4*t^8.34)/(g1^12*g2^16) + (g3^4*g4^4*g5^4*t^8.34)/(g1^13*g2^15) + (g3^4*g4^4*g5^4*t^8.34)/(g1^14*g2^14) + (g3^4*g4^4*g5^4*t^8.34)/(g1^15*g2^13) + (g3^4*g4^4*g5^4*t^8.34)/(g1^16*g2^12) + (g3^3*g4*t^8.52)/(g1*g2) + (g3^2*g4^2*t^8.52)/(g1*g2) + (g3*g4^3*t^8.52)/(g1*g2) + (g3^3*g5*t^8.52)/(g1*g2) + (g3^2*g4*g5*t^8.52)/g1^2 + (g3^2*g4*g5*t^8.52)/g2^2 + (3*g3^2*g4*g5*t^8.52)/(g1*g2) + (g3*g4^2*g5*t^8.52)/g1^2 + (g3*g4^2*g5*t^8.52)/g2^2 + (3*g3*g4^2*g5*t^8.52)/(g1*g2) + (g4^3*g5*t^8.52)/(g1*g2) + (g3^2*g5^2*t^8.52)/(g1*g2) + (g3*g4*g5^2*t^8.52)/g1^2 + (g3*g4*g5^2*t^8.52)/g2^2 + (3*g3*g4*g5^2*t^8.52)/(g1*g2) + (g4^2*g5^2*t^8.52)/(g1*g2) + (g3*g5^3*t^8.52)/(g1*g2) + (g4*g5^3*t^8.52)/(g1*g2) - (g3*g4*t^8.53)/(g1^2*g2^4) - (g3*g4*t^8.53)/(g1^3*g2^3) - (g3*g4*t^8.53)/(g1^4*g2^2) - (g3*g5*t^8.53)/(g1^2*g2^4) - (g3*g5*t^8.53)/(g1^3*g2^3) - (g3*g5*t^8.53)/(g1^4*g2^2) - (g4*g5*t^8.53)/(g1^2*g2^4) - (g4*g5*t^8.53)/(g1^3*g2^3) - (g4*g5*t^8.53)/(g1^4*g2^2) - g1^3*g2*t^8.59 - 2*g1^2*g2^2*t^8.59 - g1*g2^3*t^8.59 + t^8.59/g3^2 + t^8.59/g4^2 + t^8.59/(g3*g4) + (g1^2*g2^2*g3*t^8.59)/g4 + (g1^2*g2^2*g4*t^8.59)/g3 + g1^4*g2^4*g3*g4*t^8.59 + t^8.59/g5^2 + t^8.59/(g3*g5) + (g1^2*g2^2*g3*t^8.59)/g5 + t^8.59/(g4*g5) + (g1^2*g2^2*g3^2*t^8.59)/(g4*g5) + (g1^2*g2^2*g4*t^8.59)/g5 + (g1^2*g2^2*g4^2*t^8.59)/(g3*g5) + (g1^2*g2^2*g5*t^8.59)/g3 + g1^4*g2^4*g3*g5*t^8.59 + (g1^2*g2^2*g5*t^8.59)/g4 + g1^4*g2^4*g4*g5*t^8.59 + (g1^2*g2^2*g5^2*t^8.59)/(g3*g4) + (g1^5*g2^5*t^8.65)/(g3^2*g4^2) + (g1^7*g2^7*t^8.65)/(g3*g4) + (g1^5*g2^5*t^8.65)/(g3^2*g5^2) + (g1^5*g2^5*t^8.65)/(g4^2*g5^2) + (g1^5*g2^5*t^8.65)/(g3*g4*g5^2) + (g1^7*g2^7*t^8.65)/(g3*g5) + (g1^5*g2^5*t^8.65)/(g3*g4^2*g5) + (g1^7*g2^7*t^8.65)/(g4*g5) + (g1^5*g2^5*t^8.65)/(g3^2*g4*g5) + (g1^8*g2^8*t^8.72)/(g3^2*g4^3*g5^3) + (g1^8*g2^8*t^8.72)/(g3^3*g4^2*g5^3) + (g1^8*g2^8*t^8.72)/(g3^3*g4^3*g5^2) + (g3^3*g4^3*g5^3*t^8.84)/(g1^7*g2^10) + (g3^3*g4^3*g5^3*t^8.84)/(g1^8*g2^9) + (g3^3*g4^3*g5^3*t^8.84)/(g1^9*g2^8) + (g3^3*g4^3*g5^3*t^8.84)/(g1^10*g2^7) + (g3^3*g4^3*g5*t^8.9)/(g1^3*g2^4) + (g3^3*g4^3*g5*t^8.9)/(g1^4*g2^3) + (g3^3*g4^2*g5^2*t^8.9)/(g1^3*g2^4) + (g3^3*g4^2*g5^2*t^8.9)/(g1^4*g2^3) + (g3^2*g4^3*g5^2*t^8.9)/(g1^3*g2^4) + (g3^2*g4^3*g5^2*t^8.9)/(g1^4*g2^3) + (g3^3*g4*g5^3*t^8.9)/(g1^3*g2^4) + (g3^3*g4*g5^3*t^8.9)/(g1^4*g2^3) + (g3^2*g4^2*g5^3*t^8.9)/(g1^3*g2^4) + (g3^2*g4^2*g5^3*t^8.9)/(g1^4*g2^3) + (g3*g4^3*g5^3*t^8.9)/(g1^3*g2^4) + (g3*g4^3*g5^3*t^8.9)/(g1^4*g2^3) + (g3^3*t^8.97)/g1 + (g3^3*t^8.97)/g2 + (2*g3^2*g4*t^8.97)/g1 + (2*g3^2*g4*t^8.97)/g2 + (2*g3*g4^2*t^8.97)/g1 + (2*g3*g4^2*t^8.97)/g2 + (g4^3*t^8.97)/g1 + (g4^3*t^8.97)/g2 + (2*g3^2*g5*t^8.97)/g1 + (2*g3^2*g5*t^8.97)/g2 + (3*g3*g4*g5*t^8.97)/g1 + (3*g3*g4*g5*t^8.97)/g2 + (2*g4^2*g5*t^8.97)/g1 + (2*g4^2*g5*t^8.97)/g2 + (2*g3*g5^2*t^8.97)/g1 + (2*g3*g5^2*t^8.97)/g2 + (2*g4*g5^2*t^8.97)/g1 + (2*g4*g5^2*t^8.97)/g2 + (g5^3*t^8.97)/g1 + (g5^3*t^8.97)/g2 - t^4.71/(g1*g2*y) - (g3*g4*g5*t^6.79)/(g1^4*g2^5*y) - (g3*g4*g5*t^6.79)/(g1^5*g2^4*y) + (g3^2*g4^2*g5^2*t^7.17)/(g1^7*g2^7*y) + (g3*g4*g5*t^7.67)/(g1*g2^2*y) + (g3*g4*g5*t^7.67)/(g1^2*g2*y) + (g3^2*g4^2*g5*t^8.49)/(g1^3*g2^4*y) + (g3^2*g4^2*g5*t^8.49)/(g1^4*g2^3*y) + (g3^2*g4*g5^2*t^8.49)/(g1^3*g2^4*y) + (g3^2*g4*g5^2*t^8.49)/(g1^4*g2^3*y) + (g3*g4^2*g5^2*t^8.49)/(g1^3*g2^4*y) + (g3*g4^2*g5^2*t^8.49)/(g1^4*g2^3*y) + (g3*t^8.56)/(g1*y) + (g3*t^8.56)/(g2*y) + (g4*t^8.56)/(g1*y) + (g4*t^8.56)/(g2*y) + (g5*t^8.56)/(g1*y) + (g5*t^8.56)/(g2*y) + (g1^3*g2^2*t^8.62)/(g3*g4*g5*y) + (g1^2*g2^3*t^8.62)/(g3*g4*g5*y) - (g3^2*g4^2*g5^2*t^8.87)/(g1^7*g2^9*y) - (g3^2*g4^2*g5^2*t^8.87)/(g1^8*g2^8*y) - (g3^2*g4^2*g5^2*t^8.87)/(g1^9*g2^7*y) + (g3^2*g4*g5*t^8.94)/(g1^2*g2^4*y) + (2*g3^2*g4*g5*t^8.94)/(g1^3*g2^3*y) + (g3^2*g4*g5*t^8.94)/(g1^4*g2^2*y) + (g3*g4^2*g5*t^8.94)/(g1^2*g2^4*y) + (2*g3*g4^2*g5*t^8.94)/(g1^3*g2^3*y) + (g3*g4^2*g5*t^8.94)/(g1^4*g2^2*y) + (g3*g4*g5^2*t^8.94)/(g1^2*g2^4*y) + (2*g3*g4*g5^2*t^8.94)/(g1^3*g2^3*y) + (g3*g4*g5^2*t^8.94)/(g1^4*g2^2*y) - (t^4.71*y)/(g1*g2) - (g3*g4*g5*t^6.79*y)/(g1^4*g2^5) - (g3*g4*g5*t^6.79*y)/(g1^5*g2^4) + (g3^2*g4^2*g5^2*t^7.17*y)/(g1^7*g2^7) + (g3*g4*g5*t^7.67*y)/(g1*g2^2) + (g3*g4*g5*t^7.67*y)/(g1^2*g2) + (g3^2*g4^2*g5*t^8.49*y)/(g1^3*g2^4) + (g3^2*g4^2*g5*t^8.49*y)/(g1^4*g2^3) + (g3^2*g4*g5^2*t^8.49*y)/(g1^3*g2^4) + (g3^2*g4*g5^2*t^8.49*y)/(g1^4*g2^3) + (g3*g4^2*g5^2*t^8.49*y)/(g1^3*g2^4) + (g3*g4^2*g5^2*t^8.49*y)/(g1^4*g2^3) + (g3*t^8.56*y)/g1 + (g3*t^8.56*y)/g2 + (g4*t^8.56*y)/g1 + (g4*t^8.56*y)/g2 + (g5*t^8.56*y)/g1 + (g5*t^8.56*y)/g2 + (g1^3*g2^2*t^8.62*y)/(g3*g4*g5) + (g1^2*g2^3*t^8.62*y)/(g3*g4*g5) - (g3^2*g4^2*g5^2*t^8.87*y)/(g1^7*g2^9) - (g3^2*g4^2*g5^2*t^8.87*y)/(g1^8*g2^8) - (g3^2*g4^2*g5^2*t^8.87*y)/(g1^9*g2^7) + (g3^2*g4*g5*t^8.94*y)/(g1^2*g2^4) + (2*g3^2*g4*g5*t^8.94*y)/(g1^3*g2^3) + (g3^2*g4*g5*t^8.94*y)/(g1^4*g2^2) + (g3*g4^2*g5*t^8.94*y)/(g1^2*g2^4) + (2*g3*g4^2*g5*t^8.94*y)/(g1^3*g2^3) + (g3*g4^2*g5*t^8.94*y)/(g1^4*g2^2) + (g3*g4*g5^2*t^8.94*y)/(g1^2*g2^4) + (2*g3*g4*g5^2*t^8.94*y)/(g1^3*g2^3) + (g3*g4*g5^2*t^8.94*y)/(g1^4*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55597 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_2q_3$ | 0.8849 | 1.096 | 0.8074 | [X:[], M:[0.6768, 0.6768], q:[0.5964, 0.7269, 0.7269], qb:[0.5882, 0.5882, 0.5882], phi:[0.5463]] | 2*t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.55 + 6*t^3.95 + 3*t^4.06 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.22 + 2*t^5.31 + 6*t^5.56 + 6*t^5.58 + 9*t^5.98 - 11*t^6. - t^4.64/y - t^4.64*y | detail |