Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1152 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_6\phi_1q_2^2$ + $ M_7q_1q_2$ 0.7166 0.9045 0.7922 [X:[], M:[0.9659, 1.1248, 0.9725, 0.7845, 0.8752, 0.6806, 0.7779], q:[0.7812, 0.4409], qb:[0.5932, 0.4343], phi:[0.4376]] [X:[], M:[[-7, 1], [4, 0], [-11, -1], [-1, -1], [-4, 0], [10, 2], [3, 1]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_7$, $ M_4$, $ M_5$, $ \phi_1^2$, $ M_1$, $ M_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ q_1\tilde{q}_1$, $ M_6M_7$, $ M_4M_6$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_5M_6$, $ M_7^2$, $ M_6\phi_1^2$, $ M_4M_7$, $ M_4^2$, $ \phi_1\tilde{q}_1^2$, $ M_1M_6$, $ M_3M_6$, $ M_5M_7$, $ M_7\phi_1^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_1M_7$, $ M_1M_4$, $ M_5^2$, $ M_3M_7$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_3M_4$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_6\phi_1\tilde{q}_2^2$ . -3 t^2.04 + t^2.33 + t^2.35 + 2*t^2.63 + t^2.9 + t^2.92 + t^3.92 + t^3.94 + t^4.08 + t^4.12 + t^4.38 + 2*t^4.4 + t^4.42 + 3*t^4.67 + t^4.69 + t^4.71 + t^4.87 + t^4.94 + 3*t^4.96 + 2*t^4.98 + t^5.23 + 5*t^5.25 + t^5.27 + t^5.52 + t^5.54 + t^5.8 + t^5.82 + t^5.84 + t^5.96 - 3*t^6. - t^6.02 + t^6.13 + t^6.16 + t^6.25 + t^6.27 + t^6.42 + 2*t^6.44 + t^6.46 + 2*t^6.54 + t^6.56 + 3*t^6.71 + 2*t^6.73 + 3*t^6.75 + t^6.77 + t^6.82 + t^6.84 + t^6.91 + t^6.98 + 4*t^7. + 4*t^7.02 + 2*t^7.04 + t^7.06 + t^7.21 + t^7.23 + t^7.27 + 6*t^7.29 + 2*t^7.31 + t^7.33 + t^7.5 + 2*t^7.57 + 5*t^7.58 + 4*t^7.6 + t^7.62 - t^7.77 - t^7.79 + 2*t^7.84 + 3*t^7.86 + 7*t^7.88 + t^7.9 + t^8. - 3*t^8.04 - 2*t^8.06 - t^8.08 + t^8.13 + 3*t^8.15 + 4*t^8.17 + t^8.19 + t^8.21 + t^8.29 + t^8.31 - 4*t^8.33 - 5*t^8.35 - t^8.37 + t^8.42 + t^8.44 + 2*t^8.46 + 2*t^8.48 + t^8.5 + 3*t^8.59 - 6*t^8.63 - 2*t^8.65 + t^8.69 + t^8.71 + t^8.73 + 4*t^8.75 + 2*t^8.77 + 4*t^8.79 + t^8.86 + 2*t^8.88 - 2*t^8.9 - 4*t^8.92 - t^8.94 + t^8.96 + t^8.99 - t^4.31/y - t^6.35/y - t^6.65/y - t^6.67/y - t^6.94/y - t^7.21/y - t^7.23/y + t^7.38/y + (2*t^7.4)/y + t^7.42/y + (2*t^7.67)/y + (2*t^7.69)/y + t^7.94/y + (4*t^7.96)/y + (3*t^7.98)/y + t^8.23/y + (3*t^8.25)/y + (2*t^8.27)/y - t^8.4/y + (2*t^8.52)/y + (2*t^8.54)/y - t^8.69/y - t^8.71/y + t^8.82/y + t^8.96/y - t^8.98/y - t^4.31*y - t^6.35*y - t^6.65*y - t^6.67*y - t^6.94*y - t^7.21*y - t^7.23*y + t^7.38*y + 2*t^7.4*y + t^7.42*y + 2*t^7.67*y + 2*t^7.69*y + t^7.94*y + 4*t^7.96*y + 3*t^7.98*y + t^8.23*y + 3*t^8.25*y + 2*t^8.27*y - t^8.4*y + 2*t^8.52*y + 2*t^8.54*y - t^8.69*y - t^8.71*y + t^8.82*y + t^8.96*y - t^8.98*y g1^10*g2^2*t^2.04 + g1^3*g2*t^2.33 + t^2.35/(g1*g2) + (2*t^2.63)/g1^4 + (g2*t^2.9)/g1^7 + t^2.92/(g1^11*g2) + (g2^2*t^3.92)/g1^2 + t^3.94/g1^6 + g1^20*g2^4*t^4.08 + g1^12*t^4.12 + g1^13*g2^3*t^4.38 + 2*g1^9*g2*t^4.4 + (g1^5*t^4.42)/g2 + 3*g1^6*g2^2*t^4.67 + g1^2*t^4.69 + t^4.71/(g1^2*g2^2) + g1^20*t^4.87 + g1^3*g2^3*t^4.94 + (3*g2*t^4.96)/g1 + (2*t^4.98)/(g1^5*g2) + (g2^2*t^5.23)/g1^4 + (5*t^5.25)/g1^8 + t^5.27/(g1^12*g2^2) + (g2*t^5.52)/g1^11 + t^5.54/(g1^15*g2) + (g2^2*t^5.8)/g1^14 + t^5.82/g1^18 + t^5.84/(g1^22*g2^2) + g1^8*g2^4*t^5.96 - 3*t^6. - t^6.02/(g1^4*g2^2) + g1^30*g2^6*t^6.13 + g1^22*g2^2*t^6.16 + g1*g2^3*t^6.25 + (g2*t^6.27)/g1^3 + g1^23*g2^5*t^6.42 + 2*g1^19*g2^3*t^6.44 + g1^15*g2*t^6.46 + (2*g2^2*t^6.54)/g1^6 + t^6.56/g1^10 + 3*g1^16*g2^4*t^6.71 + 2*g1^12*g2^2*t^6.73 + 3*g1^8*t^6.75 + (g1^4*t^6.77)/g2^2 + (g2^3*t^6.82)/g1^9 + (g2*t^6.84)/g1^13 + g1^30*g2^2*t^6.91 + g1^13*g2^5*t^6.98 + 4*g1^9*g2^3*t^7. + 4*g1^5*g2*t^7.02 + (2*g1*t^7.04)/g2 + t^7.06/(g1^3*g2^3) + g1^23*g2*t^7.21 + (g1^19*t^7.23)/g2 + g1^6*g2^4*t^7.27 + 6*g1^2*g2^2*t^7.29 + (2*t^7.31)/g1^2 + t^7.33/(g1^6*g2^2) + g1^16*t^7.5 + (2*g2^3*t^7.57)/g1 + (5*g2*t^7.58)/g1^5 + (4*t^7.6)/(g1^9*g2) + t^7.62/(g1^13*g2^3) - g1^13*g2*t^7.77 - (g1^9*t^7.79)/g2 + (2*g2^4*t^7.84)/g1^4 + (3*g2^2*t^7.86)/g1^8 + (7*t^7.88)/g1^12 + t^7.9/(g1^16*g2^2) + g1^18*g2^6*t^8. - 3*g1^10*g2^2*t^8.04 - 2*g1^6*t^8.06 - (g1^2*t^8.08)/g2^2 + (g2^3*t^8.13)/g1^11 + (3*g2*t^8.15)/g1^15 + (3*t^8.17)/(g1^19*g2) + g1^40*g2^8*t^8.17 + t^8.19/(g1^23*g2^3) + g1^32*g2^4*t^8.21 + g1^11*g2^5*t^8.29 + g1^7*g2^3*t^8.31 - 4*g1^3*g2*t^8.33 - (5*t^8.35)/(g1*g2) - t^8.37/(g1^5*g2^3) + (g2^2*t^8.42)/g1^18 + t^8.44/g1^22 + t^8.46/(g1^26*g2^2) + g1^33*g2^7*t^8.46 + 2*g1^29*g2^5*t^8.48 + g1^25*g2^3*t^8.5 + 3*g1^4*g2^4*t^8.59 - (6*t^8.63)/g1^4 - (2*t^8.65)/(g1^8*g2^2) + (g2^3*t^8.69)/g1^21 + (g2*t^8.71)/g1^25 + t^8.73/(g1^29*g2) + t^8.75/(g1^33*g2^3) + 3*g1^26*g2^6*t^8.75 + 2*g1^22*g2^4*t^8.77 + 4*g1^18*g2^2*t^8.79 + g1*g2^5*t^8.86 + (2*g2^3*t^8.88)/g1^3 - (2*g2*t^8.9)/g1^7 - (4*t^8.92)/(g1^11*g2) - t^8.94/(g1^15*g2^3) + g1^40*g2^4*t^8.96 + g1^32*t^8.99 - t^4.31/(g1^2*y) - (g1^8*g2^2*t^6.35)/y - (g1*g2*t^6.65)/y - t^6.67/(g1^3*g2*y) - t^6.94/(g1^6*y) - (g2*t^7.21)/(g1^9*y) - t^7.23/(g1^13*g2*y) + (g1^13*g2^3*t^7.38)/y + (2*g1^9*g2*t^7.4)/y + (g1^5*t^7.42)/(g2*y) + (2*g1^6*g2^2*t^7.67)/y + (2*g1^2*t^7.69)/y + (g1^3*g2^3*t^7.94)/y + (4*g2*t^7.96)/(g1*y) + (3*t^7.98)/(g1^5*g2*y) + (g2^2*t^8.23)/(g1^4*y) + (3*t^8.25)/(g1^8*y) + (2*t^8.27)/(g1^12*g2^2*y) - (g1^18*g2^4*t^8.4)/y + (2*g2*t^8.52)/(g1^11*y) + (2*t^8.54)/(g1^15*g2*y) - (g1^11*g2^3*t^8.69)/y - (g1^7*g2*t^8.71)/y + t^8.82/(g1^18*y) + (g1^8*g2^4*t^8.96)/y - (g1^4*g2^2*t^8.98)/y - (t^4.31*y)/g1^2 - g1^8*g2^2*t^6.35*y - g1*g2*t^6.65*y - (t^6.67*y)/(g1^3*g2) - (t^6.94*y)/g1^6 - (g2*t^7.21*y)/g1^9 - (t^7.23*y)/(g1^13*g2) + g1^13*g2^3*t^7.38*y + 2*g1^9*g2*t^7.4*y + (g1^5*t^7.42*y)/g2 + 2*g1^6*g2^2*t^7.67*y + 2*g1^2*t^7.69*y + g1^3*g2^3*t^7.94*y + (4*g2*t^7.96*y)/g1 + (3*t^7.98*y)/(g1^5*g2) + (g2^2*t^8.23*y)/g1^4 + (3*t^8.25*y)/g1^8 + (2*t^8.27*y)/(g1^12*g2^2) - g1^18*g2^4*t^8.4*y + (2*g2*t^8.52*y)/g1^11 + (2*t^8.54*y)/(g1^15*g2) - g1^11*g2^3*t^8.69*y - g1^7*g2*t^8.71*y + (t^8.82*y)/g1^18 + g1^8*g2^4*t^8.96*y - g1^4*g2^2*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
705 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_6\phi_1q_2^2$ 0.699 0.8725 0.8011 [X:[], M:[0.974, 1.1248, 0.9642, 0.7763, 0.8752, 0.697], q:[0.7812, 0.4327], qb:[0.5933, 0.4424], phi:[0.4376]] t^2.09 + t^2.33 + 2*t^2.63 + t^2.89 + t^2.92 + t^3.64 + t^3.94 + t^3.97 + t^4.12 + t^4.18 + t^4.39 + 2*t^4.42 + t^4.66 + 2*t^4.72 + t^4.87 + 2*t^4.95 + t^4.98 + t^5.01 + t^5.22 + 4*t^5.25 + t^5.52 + t^5.55 + t^5.73 + t^5.79 + t^5.81 + t^5.84 - 3*t^6. - t^4.31/y - t^4.31*y detail