Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56424 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ + $ M_8q_2\tilde{q}_1$ | 0.6727 | 0.8545 | 0.7872 | [X:[], M:[1.1541, 0.7556, 0.8459, 0.7831, 1.2306, 0.7066, 0.8459, 0.6928], q:[0.3916, 0.4544], qb:[0.8528, 0.7625], phi:[0.3847]] | [X:[], M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [2, 2], [-11, -13], [3, 3], [-7, -7]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_6$, $ M_2$, $ M_4$, $ M_3$, $ M_7$, $ \phi_1q_1^2$, $ M_5$, $ \phi_1q_1q_2$, $ M_8^2$, $ M_6M_8$, $ M_6^2$, $ M_2M_8$, $ M_2M_6$, $ M_4M_8$, $ M_4M_6$, $ M_2^2$, $ M_2M_4$, $ M_3M_8$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_6$, $ M_6M_7$, $ M_4^2$, $ M_2M_3$, $ M_2M_7$, $ \phi_1q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ M_4M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_3^2$, $ M_3M_7$, $ M_7^2$, $ \phi_1q_2\tilde{q}_1$, $ M_8\phi_1q_1^2$, $ M_6\phi_1q_1^2$, $ M_5M_8$, $ M_8\phi_1q_1q_2$, $ M_5M_6$, $ M_6\phi_1q_1q_2$, $ M_4\phi_1q_1^2$, $ M_2M_5$ | . | -3 | t^2.08 + t^2.12 + t^2.27 + t^2.35 + 2*t^2.54 + t^3.5 + 2*t^3.69 + t^4.16 + t^4.2 + t^4.24 + t^4.35 + t^4.39 + t^4.43 + t^4.47 + t^4.53 + 3*t^4.62 + 2*t^4.66 + t^4.7 + 2*t^4.8 + t^4.85 + 2*t^4.89 + 3*t^5.08 + t^5.58 + t^5.62 + 2*t^5.77 + t^5.81 + t^5.85 + t^5.96 - 3*t^6. + 3*t^6.04 - t^6.19 + 3*t^6.23 + t^6.24 + t^6.28 + t^6.32 + t^6.36 + t^6.42 + t^6.47 + 2*t^6.51 + t^6.55 + t^6.59 + t^6.61 + t^6.65 + 3*t^6.69 + 3*t^6.74 + 3*t^6.78 + t^6.8 + t^6.82 + 3*t^6.88 + 2*t^6.92 + 3*t^6.97 + 3*t^7.01 + t^7.05 + 2*t^7.07 + 2*t^7.15 + 4*t^7.2 + 2*t^7.24 + t^7.34 + t^7.38 + 2*t^7.42 - t^7.57 + 3*t^7.61 + t^7.66 + t^7.7 + t^7.74 + 2*t^7.85 + t^7.89 + 2*t^7.93 + t^7.97 + t^8.04 - 3*t^8.08 + 2*t^8.16 + t^8.2 + t^8.23 - 4*t^8.27 + 3*t^8.31 - 2*t^8.35 + t^8.36 + 3*t^8.39 + t^8.4 + t^8.44 - t^8.46 + t^8.48 + t^8.5 - 6*t^8.54 + 5*t^8.58 + 2*t^8.63 + t^8.67 + t^8.69 + t^8.71 - 2*t^8.73 + 7*t^8.77 + 3*t^8.81 + 4*t^8.86 + t^8.88 + 3*t^8.9 + t^8.92 + t^8.94 + 3*t^8.96 - t^4.15/y - t^6.23/y - t^6.27/y - t^6.42/y - t^6.5/y - t^6.69/y + t^7.2/y + t^7.35/y + t^7.39/y + t^7.43/y + t^7.47/y + (4*t^7.62)/y + (2*t^7.66)/y + (3*t^7.8)/y + (3*t^7.89)/y + t^8.03/y + (2*t^8.08)/y - t^8.31/y - t^8.35/y - t^8.39/y - t^8.5/y - t^8.54/y - t^8.69/y + t^8.77/y + t^8.81/y + t^8.96/y - t^4.15*y - t^6.23*y - t^6.27*y - t^6.42*y - t^6.5*y - t^6.69*y + t^7.2*y + t^7.35*y + t^7.39*y + t^7.43*y + t^7.47*y + 4*t^7.62*y + 2*t^7.66*y + 3*t^7.8*y + 3*t^7.89*y + t^8.03*y + 2*t^8.08*y - t^8.31*y - t^8.35*y - t^8.39*y - t^8.5*y - t^8.54*y - t^8.69*y + t^8.77*y + t^8.81*y + t^8.96*y | t^2.08/(g1^7*g2^7) + t^2.12/(g1^11*g2^13) + g1^2*g2^4*t^2.27 + t^2.35/(g1^6*g2^8) + 2*g1^3*g2^3*t^2.54 + t^3.5/(g1^7*g2^9) + 2*g1^2*g2^2*t^3.69 + t^4.16/(g1^14*g2^14) + t^4.2/(g1^18*g2^20) + t^4.24/(g1^22*g2^26) + t^4.35/(g1^5*g2^3) + t^4.39/(g1^9*g2^9) + t^4.43/(g1^13*g2^15) + t^4.47/(g1^17*g2^21) + g1^4*g2^8*t^4.53 + (3*t^4.62)/(g1^4*g2^4) + (2*t^4.66)/(g1^8*g2^10) + t^4.7/(g1^12*g2^16) + 2*g1^5*g2^7*t^4.8 + g1*g2*t^4.85 + (2*t^4.89)/(g1^3*g2^5) + 3*g1^6*g2^6*t^5.08 + t^5.58/(g1^14*g2^16) + t^5.62/(g1^18*g2^22) + (2*t^5.77)/(g1^5*g2^5) + t^5.81/(g1^9*g2^11) + t^5.85/(g1^13*g2^17) + g1^4*g2^6*t^5.96 - 3*t^6. + (3*t^6.04)/(g1^4*g2^6) - g1^9*g2^11*t^6.19 + 3*g1^5*g2^5*t^6.23 + t^6.24/(g1^21*g2^21) + t^6.28/(g1^25*g2^27) + t^6.32/(g1^29*g2^33) + t^6.36/(g1^33*g2^39) + t^6.42/(g1^12*g2^10) + t^6.47/(g1^16*g2^16) + (2*t^6.51)/(g1^20*g2^22) + t^6.55/(g1^24*g2^28) + t^6.59/(g1^28*g2^34) + (g2*t^6.61)/g1^3 + t^6.65/(g1^7*g2^5) + (3*t^6.69)/(g1^11*g2^11) + (3*t^6.74)/(g1^15*g2^17) + (3*t^6.78)/(g1^19*g2^23) + g1^6*g2^12*t^6.8 + t^6.82/(g1^23*g2^29) + (3*t^6.88)/g1^2 + (2*t^6.92)/(g1^6*g2^6) + (3*t^6.97)/(g1^10*g2^12) + (3*t^7.01)/(g1^14*g2^18) + t^7.05/(g1^18*g2^24) + 2*g1^7*g2^11*t^7.07 + (2*t^7.15)/(g1*g2) + (4*t^7.2)/(g1^5*g2^7) + (2*t^7.24)/(g1^9*g2^13) + g1^8*g2^10*t^7.34 + g1^4*g2^4*t^7.38 + (2*t^7.42)/g2^2 - g1^13*g2^15*t^7.57 + 3*g1^9*g2^9*t^7.61 + t^7.66/(g1^21*g2^23) + t^7.7/(g1^25*g2^29) + t^7.74/(g1^29*g2^35) + (2*t^7.85)/(g1^12*g2^12) + t^7.89/(g1^16*g2^18) + (2*t^7.93)/(g1^20*g2^24) + t^7.97/(g1^24*g2^30) + t^8.04/(g1^3*g2) - (3*t^8.08)/(g1^7*g2^7) + (2*t^8.16)/(g1^15*g2^19) + t^8.2/(g1^19*g2^25) + g1^6*g2^10*t^8.23 - 4*g1^2*g2^4*t^8.27 + t^8.31/(g1^28*g2^28) + (2*t^8.31)/(g1^2*g2^2) - (2*t^8.35)/(g1^6*g2^8) + t^8.36/(g1^32*g2^34) + (3*t^8.39)/(g1^10*g2^14) + t^8.4/(g1^36*g2^40) + t^8.44/(g1^40*g2^46) - g1^11*g2^15*t^8.46 + t^8.48/(g1^44*g2^52) + t^8.5/(g1^19*g2^17) + t^8.54/(g1^23*g2^23) - 7*g1^3*g2^3*t^8.54 + (2*t^8.58)/(g1^27*g2^29) + (3*t^8.58)/(g1*g2^3) + (2*t^8.63)/(g1^31*g2^35) + t^8.67/(g1^35*g2^41) + t^8.69/(g1^10*g2^6) + t^8.71/(g1^39*g2^47) + t^8.73/(g1^14*g2^12) - 3*g1^12*g2^14*t^8.73 + (4*t^8.77)/(g1^18*g2^18) + 3*g1^8*g2^8*t^8.77 + (3*t^8.81)/(g1^22*g2^24) + (4*t^8.86)/(g1^26*g2^30) + (g2^5*t^8.88)/g1 + (3*t^8.9)/(g1^30*g2^36) + t^8.92/(g1^5*g2) + t^8.94/(g1^34*g2^42) + (3*t^8.96)/(g1^9*g2^7) - t^4.15/(g1*g2*y) - t^6.23/(g1^8*g2^8*y) - t^6.27/(g1^12*g2^14*y) - (g1*g2^3*t^6.42)/y - t^6.5/(g1^7*g2^9*y) - (g1^2*g2^2*t^6.69)/y + t^7.2/(g1^18*g2^20*y) + t^7.35/(g1^5*g2^3*y) + t^7.39/(g1^9*g2^9*y) + t^7.43/(g1^13*g2^15*y) + t^7.47/(g1^17*g2^21*y) + (4*t^7.62)/(g1^4*g2^4*y) + (2*t^7.66)/(g1^8*g2^10*y) + (3*g1^5*g2^7*t^7.8)/y + (3*t^7.89)/(g1^3*g2^5*y) + (g1^10*g2^12*t^8.03)/y + (2*g1^6*g2^6*t^8.08)/y - t^8.31/(g1^15*g2^15*y) - t^8.35/(g1^19*g2^21*y) - t^8.39/(g1^23*g2^27*y) - t^8.5/(g1^6*g2^4*y) - t^8.54/(g1^10*g2^10*y) - (g1^3*g2^7*t^8.69)/y + t^8.77/(g1^5*g2^5*y) + t^8.81/(g1^9*g2^11*y) + (g1^4*g2^6*t^8.96)/y - (t^4.15*y)/(g1*g2) - (t^6.23*y)/(g1^8*g2^8) - (t^6.27*y)/(g1^12*g2^14) - g1*g2^3*t^6.42*y - (t^6.5*y)/(g1^7*g2^9) - g1^2*g2^2*t^6.69*y + (t^7.2*y)/(g1^18*g2^20) + (t^7.35*y)/(g1^5*g2^3) + (t^7.39*y)/(g1^9*g2^9) + (t^7.43*y)/(g1^13*g2^15) + (t^7.47*y)/(g1^17*g2^21) + (4*t^7.62*y)/(g1^4*g2^4) + (2*t^7.66*y)/(g1^8*g2^10) + 3*g1^5*g2^7*t^7.8*y + (3*t^7.89*y)/(g1^3*g2^5) + g1^10*g2^12*t^8.03*y + 2*g1^6*g2^6*t^8.08*y - (t^8.31*y)/(g1^15*g2^15) - (t^8.35*y)/(g1^19*g2^21) - (t^8.39*y)/(g1^23*g2^27) - (t^8.5*y)/(g1^6*g2^4) - (t^8.54*y)/(g1^10*g2^10) - g1^3*g2^7*t^8.69*y + (t^8.77*y)/(g1^5*g2^5) + (t^8.81*y)/(g1^9*g2^11) + g1^4*g2^6*t^8.96*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
52586 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ | 0.6521 | 0.8149 | 0.8003 | [X:[], M:[1.1596, 0.764, 0.8404, 0.7821, 1.2269, 0.7148, 0.8404], q:[0.3911, 0.4493], qb:[0.8449, 0.7685], phi:[0.3865]] | t^2.14 + t^2.29 + t^2.35 + 2*t^2.52 + t^3.51 + 2*t^3.68 + t^3.88 + t^4.29 + t^4.44 + t^4.49 + t^4.58 + t^4.64 + 2*t^4.67 + t^4.69 + 2*t^4.81 + t^4.84 + 2*t^4.87 + 3*t^5.04 + t^5.65 + t^5.83 + t^5.85 + t^5.97 - 3*t^6. - t^4.16/y - t^4.16*y | detail |