Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57572 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4615 1.6651 0.8777 [X:[1.3411], M:[0.685, 1.0116], q:[0.5755, 0.5196], qb:[0.4659, 0.4622], phi:[0.3295]] [X:[[0, 0, 2]], M:[[1, 2, -10], [0, 0, 3]], q:[[1, 1, -5], [-2, -2, 11]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.06 + t^2.95 + t^2.96 + t^3.03 + t^3.11 + t^3.12 + t^3.93 + t^4.02 + t^4.1 + 2*t^4.11 + t^4.92 + t^4.93 + t^5. + t^5.01 + 2*t^5.09 + t^5.1 + t^5.16 + 2*t^5.17 + t^5.18 + t^5.89 + t^5.9 + t^5.91 + t^5.98 + t^5.99 - 3*t^6. - t^6.01 + t^6.06 + 3*t^6.07 + 2*t^6.08 + 2*t^6.15 + 3*t^6.16 + t^6.17 + t^6.23 + t^6.24 + t^6.25 + t^6.88 + t^6.89 + 2*t^6.97 + t^6.98 - t^6.99 - t^7. + 2*t^7.05 + 4*t^7.06 + 2*t^7.07 + t^7.13 + 5*t^7.14 + 3*t^7.15 + t^7.16 + 2*t^7.21 + t^7.22 + 3*t^7.23 + t^7.24 + t^7.64 + 2*t^7.87 + 2*t^7.88 - t^7.9 + t^7.95 + 2*t^7.96 - t^7.98 - t^7.99 + 3*t^8.04 + 4*t^8.05 - 2*t^8.06 - t^8.07 + t^8.1 + t^8.11 + 6*t^8.12 + 2*t^8.13 + 2*t^8.14 + t^8.19 + 3*t^8.2 + 5*t^8.21 + 2*t^8.22 + t^8.27 + 3*t^8.28 + 2*t^8.29 + t^8.3 - t^8.71 - t^8.72 + t^8.84 + t^8.85 + 2*t^8.86 + 2*t^8.87 - t^8.88 - t^8.89 + t^8.93 + t^8.94 - 2*t^8.95 - 4*t^8.96 + t^8.97/y^2 - t^3.99/y - t^4.98/y - t^6.04/y - t^6.93/y - t^6.94/y - t^7.02/y - t^7.03/y - t^7.1/y - t^7.11/y - t^7.92/y + t^8./y - (2*t^8.1)/y + t^8.17/y + t^8.18/y + t^8.9/y - t^8.91/y + t^8.98/y + t^8.99/y - t^3.99*y - t^4.98*y - t^6.04*y - t^6.93*y - t^6.94*y - t^7.02*y - t^7.03*y - t^7.1*y - t^7.11*y - t^7.92*y + t^8.*y - 2*t^8.1*y + t^8.17*y + t^8.18*y + t^8.9*y - t^8.91*y + t^8.98*y + t^8.99*y + t^8.97*y^2 (g1*g2^2*t^2.06)/g3^10 + (g3^11*t^2.95)/(g1^2*g2) + (g3^11*t^2.96)/(g1*g2^2) + g3^3*t^3.03 + (g1*g2^2*t^3.11)/g3^5 + (g1^2*g2*t^3.12)/g3^5 + (g3^10*t^3.93)/(g1^2*g2) + g3^2*t^4.02 + (g1*g2^2*t^4.1)/g3^6 + (g1^2*g2^4*t^4.11)/g3^20 + (g1^2*g2*t^4.11)/g3^6 + (g3^9*t^4.92)/(g1^2*g2) + (g3^9*t^4.93)/(g1*g2^2) + (g2*g3*t^5.)/g1 + g3*t^5.01 + (2*g1*g2^2*t^5.09)/g3^7 + (g1^2*g2*t^5.1)/g3^7 + (g1*g2^2*t^5.16)/g3 + (g1^2*g2^4*t^5.17)/g3^15 + (g1^2*g2*t^5.17)/g3 + (g1^3*g2^3*t^5.18)/g3^15 + (g3^22*t^5.89)/(g1^4*g2^2) + (g3^22*t^5.9)/(g1^3*g2^3) + (g3^22*t^5.91)/(g1^2*g2^4) + (g3^14*t^5.98)/(g1^2*g2) + (g3^14*t^5.99)/(g1*g2^2) - 3*t^6. - (g1*t^6.01)/g2 + (g2*g3^6*t^6.06)/g1 + 3*g3^6*t^6.07 + (g1*g2^2*t^6.08)/g3^8 + (g1*g3^6*t^6.08)/g2 + (2*g1*g2^2*t^6.15)/g3^2 + (g1^2*g2^4*t^6.16)/g3^16 + (2*g1^2*g2*t^6.16)/g3^2 + (g1^3*g2^6*t^6.17)/g3^30 + (g1^2*g2^4*t^6.23)/g3^10 + (g1^3*g2^3*t^6.24)/g3^10 + (g1^4*g2^2*t^6.25)/g3^10 + (g3^21*t^6.88)/(g1^4*g2^2) + (g3^21*t^6.89)/(g1^3*g2^3) + (2*g3^13*t^6.97)/(g1^2*g2) + (g3^13*t^6.98)/(g1*g2^2) - t^6.99/g3 - (g1*t^7.)/(g2*g3) + (2*g2*g3^5*t^7.05)/g1 + (g2^3*t^7.06)/g3^9 + 3*g3^5*t^7.06 + (g1*g2^2*t^7.07)/g3^9 + (g1*g3^5*t^7.07)/g2 + (g2^3*t^7.13)/g3^3 + (2*g1^2*g2^4*t^7.14)/g3^17 + (3*g1*g2^2*t^7.14)/g3^3 + (3*g1^2*g2*t^7.15)/g3^3 + (g1^3*t^7.16)/g3^3 + (2*g1^2*g2^4*t^7.21)/g3^11 + (g1^3*g2^6*t^7.22)/g3^25 + (g1^4*g2^5*t^7.23)/g3^25 + (2*g1^3*g2^3*t^7.23)/g3^11 + (g1^4*g2^2*t^7.24)/g3^11 + (g3^30*t^7.64)/(g1^6*g2^6) + (2*g3^20*t^7.87)/(g1^4*g2^2) + (2*g3^20*t^7.88)/(g1^3*g2^3) - (g3^6*t^7.89)/(g1^2*g2) + (g3^20*t^7.89)/(g1^2*g2^4) - (g3^6*t^7.9)/(g1*g2^2) + (g3^12*t^7.95)/g1^3 + (2*g3^12*t^7.96)/(g1^2*g2) - (g2*t^7.97)/(g1*g3^2) + (g3^12*t^7.97)/(g1*g2^2) - t^7.98/g3^2 - (g1*t^7.99)/(g2*g3^2) + (3*g2*g3^4*t^8.04)/g1 + 4*g3^4*t^8.05 - (3*g1*g2^2*t^8.06)/g3^10 + (g1*g3^4*t^8.06)/g2 - (g1^2*g2*t^8.07)/g3^10 + (g2*g3^10*t^8.1)/g1 + (g2^3*t^8.11)/g3^4 + (4*g1*g2^2*t^8.12)/g3^4 + 2*g3^10*t^8.12 + (g1^2*g2^4*t^8.13)/g3^18 + (g1*g3^10*t^8.13)/g2 + (2*g1^2*g2*t^8.14)/g3^4 + g1*g2^2*g3^2*t^8.19 + (3*g1^2*g2^4*t^8.2)/g3^12 + (g1^3*g2^6*t^8.21)/g3^26 + (3*g1^3*g2^3*t^8.21)/g3^12 + g1^2*g2*g3^2*t^8.21 + (g1^4*g2^8*t^8.22)/g3^40 + (g1^4*g2^2*t^8.22)/g3^12 + (g1^2*g2^4*t^8.27)/g3^6 + (g1^3*g2^6*t^8.28)/g3^20 + (2*g1^3*g2^3*t^8.28)/g3^6 + (g1^4*g2^5*t^8.29)/g3^20 + (g1^4*g2^2*t^8.29)/g3^6 + (g1^5*g2^4*t^8.3)/g3^20 - (g3^21*t^8.71)/(g1^5*g2^4) - (g3^21*t^8.72)/(g1^4*g2^5) + (g3^33*t^8.84)/(g1^6*g2^3) + (g3^33*t^8.85)/(g1^5*g2^4) + (g3^19*t^8.86)/(g1^4*g2^2) + (g3^33*t^8.86)/(g1^4*g2^5) + (g3^19*t^8.87)/(g1^3*g2^3) + (g3^33*t^8.87)/(g1^3*g2^6) - (g3^5*t^8.88)/(g1^2*g2) - (g3^5*t^8.89)/(g1*g2^2) + (g3^25*t^8.93)/(g1^4*g2^2) + (g3^25*t^8.94)/(g1^3*g2^3) - (3*g3^11*t^8.95)/(g1^2*g2) + (g3^25*t^8.95)/(g1^2*g2^4) - (4*g3^11*t^8.96)/(g1*g2^2) + t^8.97/g3^3 - (g3^11*t^8.97)/g2^3 + t^8.97/(g3^3*y^2) - t^3.99/(g3*y) - t^4.98/(g3^2*y) - (g1*g2^2*t^6.04)/(g3^11*y) - (g3^10*t^6.93)/(g1^2*g2*y) - (g3^10*t^6.94)/(g1*g2^2*y) - (g3^2*t^7.02)/y - (g1*g2^2*t^7.03)/(g3^12*y) - (g1*g2^2*t^7.1)/(g3^6*y) - (g1^2*g2*t^7.11)/(g3^6*y) - (g3^9*t^7.92)/(g1^2*g2*y) + (g2*g3*t^8.)/(g1*y) - (g1^2*g2^4*t^8.1)/(g3^21*y) - (g1^2*g2*t^8.1)/(g3^7*y) + (g1^2*g2^4*t^8.17)/(g3^15*y) + (g1^3*g2^3*t^8.18)/(g3^15*y) + (g3^22*t^8.9)/(g1^3*g2^3*y) - (g3^8*t^8.91)/(g1^2*g2*y) + (g3^14*t^8.98)/(g1^2*g2*y) + (g3^14*t^8.99)/(g1*g2^2*y) - (t^3.99*y)/g3 - (t^4.98*y)/g3^2 - (g1*g2^2*t^6.04*y)/g3^11 - (g3^10*t^6.93*y)/(g1^2*g2) - (g3^10*t^6.94*y)/(g1*g2^2) - g3^2*t^7.02*y - (g1*g2^2*t^7.03*y)/g3^12 - (g1*g2^2*t^7.1*y)/g3^6 - (g1^2*g2*t^7.11*y)/g3^6 - (g3^9*t^7.92*y)/(g1^2*g2) + (g2*g3*t^8.*y)/g1 - (g1^2*g2^4*t^8.1*y)/g3^21 - (g1^2*g2*t^8.1*y)/g3^7 + (g1^2*g2^4*t^8.17*y)/g3^15 + (g1^3*g2^3*t^8.18*y)/g3^15 + (g3^22*t^8.9*y)/(g1^3*g2^3) - (g3^8*t^8.91*y)/(g1^2*g2) + (g3^14*t^8.98*y)/(g1^2*g2) + (g3^14*t^8.99*y)/(g1*g2^2) + (t^8.97*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58790 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4615 1.6648 0.8779 [X:[1.3417], M:[0.6835, 1.0126], q:[0.5752, 0.5204], qb:[0.4669, 0.4626], phi:[0.3291]] t^2.05 + t^2.95 + t^2.96 + t^3.04 + t^3.11 + t^3.13 + t^3.94 + t^4.03 + 2*t^4.1 + t^4.11 + t^4.92 + t^4.94 + t^5. + t^5.01 + 2*t^5.09 + t^5.1 + 2*t^5.16 + 2*t^5.18 + t^5.9 + t^5.91 + t^5.92 + t^5.99 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail
58823 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 1.4627 1.6628 0.8797 [X:[1.3565], M:[0.6687, 1.0347, 0.956], q:[0.5647, 0.5488], qb:[0.4607, 0.4951], phi:[0.3218]] t^2.01 + t^2.87 + t^3.03 + t^3.08 + t^3.1 + t^3.18 + t^4.01 + t^4.04 + t^4.07 + t^4.1 + t^4.14 + t^4.87 + t^4.96 + t^5.01 + t^5.03 + t^5.06 + t^5.08 + 2*t^5.11 + t^5.19 + t^5.22 + t^5.32 + t^5.74 + t^5.94 + t^5.97 - 3*t^6. - t^3.97/y - t^4.93/y - t^5.97/y - t^3.97*y - t^4.93*y - t^5.97*y detail
58629 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 1.4613 1.6638 0.8783 [X:[1.345], M:[0.6725, 1.0174], q:[0.5729, 0.5267], qb:[0.4733, 0.462], phi:[0.3275]] t^2.02 + t^2.97 + t^3. + t^3.05 + t^3.1 + t^3.14 + t^3.95 + 2*t^4.03 + t^4.09 + t^4.12 + t^4.93 + t^4.97 + t^4.98 + t^5.02 + 2*t^5.07 + t^5.1 + t^5.12 + t^5.16 + t^5.17 + t^5.21 + t^5.93 + t^5.97 - 2*t^6. - t^3.98/y - t^4.97/y - t^6./y - t^3.98*y - t^4.97*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47921 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4635 1.664 0.8795 [X:[1.3534], M:[0.671], q:[0.5755, 0.5258], qb:[0.4799, 0.479], phi:[0.3233]] t^2.013 + t^2.91 + t^3.014 + t^3.017 + t^3.163 + t^3.166 + t^3.984 + t^4.026 + t^4.06 + t^4.133 + t^4.136 + t^4.923 + t^4.954 + t^4.957 + t^5.027 + t^5.03 + t^5.103 + t^5.106 + t^5.176 + t^5.179 + t^5.283 + t^5.286 + t^5.82 + t^5.924 + t^5.927 - 3*t^6. - t^3.97/y - t^4.94/y - t^5.983/y - t^3.97*y - t^4.94*y - t^5.983*y detail