Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47124 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ 0.7185 0.912 0.7878 [M:[1.1099, 0.7844, 0.6702, 0.9957, 0.8901, 0.6787], q:[0.4381, 0.4519], qb:[0.7775, 0.5523], phi:[0.445]] [M:[[0, 4], [1, 3], [0, -12], [-1, -11], [0, -4], [2, 10]], q:[[-1, -4], [1, 0]], qb:[[0, 1], [0, 11]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$ ${}$ -3 t^2.011 + t^2.036 + t^2.353 + 2*t^2.67 + t^2.971 + t^2.987 + t^3.688 + t^4.005 + t^4.021 + 2*t^4.047 + t^4.072 + t^4.306 + t^4.348 + t^4.364 + t^4.389 + t^4.649 + 2*t^4.681 + 3*t^4.706 + t^4.982 + t^4.998 + t^5.008 + 3*t^5.023 + t^5.325 + 4*t^5.34 + 2*t^5.642 + t^5.657 + t^5.724 + t^5.943 + t^5.974 - 3*t^6. + t^6.016 + t^6.032 + t^6.041 + 2*t^6.057 + 2*t^6.083 + t^6.109 - t^6.301 + 3*t^6.358 + t^6.374 + t^6.384 + 2*t^6.4 + t^6.426 + t^6.66 + 2*t^6.675 + t^6.685 + 2*t^6.691 + t^6.701 + 5*t^6.717 + 3*t^6.743 + t^6.977 + t^6.992 + t^7.002 + t^7.008 + 2*t^7.018 + 3*t^7.034 + t^7.044 + 4*t^7.06 + t^7.278 - t^7.294 + 2*t^7.319 - t^7.335 + 4*t^7.351 + t^7.361 + 5*t^7.377 + t^7.621 - t^7.636 + t^7.652 + t^7.668 + t^7.678 + 5*t^7.694 + t^7.735 + t^7.761 + t^7.985 + t^7.995 + 3*t^8.011 + t^8.026 - 3*t^8.036 + t^8.042 + t^8.052 + 2*t^8.068 + t^8.078 + 3*t^8.093 + 2*t^8.119 + t^8.145 + t^8.312 + 2*t^8.327 - t^8.337 - 4*t^8.353 + t^8.369 + t^8.385 + 4*t^8.395 + 2*t^8.41 + t^8.42 + 2*t^8.436 + t^8.462 + 2*t^8.613 - t^8.629 + t^8.644 - t^8.654 - 7*t^8.67 + 2*t^8.686 + t^8.696 + 2*t^8.702 + 3*t^8.712 + t^8.722 + 5*t^8.727 + t^8.737 + 6*t^8.753 + 3*t^8.779 + t^8.914 + t^8.956 + t^8.961 - 5*t^8.971 - 3*t^8.987 + t^8.997 - t^4.335/y - t^6.346/y - t^6.371/y - t^6.688/y - t^7.005/y + t^7.047/y - t^7.322/y + t^7.348/y + t^7.364/y + t^7.389/y + t^7.665/y + (2*t^7.681)/y + (2*t^7.706)/y + (2*t^7.982)/y + t^7.998/y + t^8.008/y + (3*t^8.023)/y + t^8.299/y + (2*t^8.325)/y + (2*t^8.34)/y - t^8.356/y - t^8.382/y - t^8.407/y + (2*t^8.642)/y + (2*t^8.657)/y + t^8.959/y - t^4.335*y - t^6.346*y - t^6.371*y - t^6.688*y - t^7.005*y + t^7.047*y - t^7.322*y + t^7.348*y + t^7.364*y + t^7.389*y + t^7.665*y + 2*t^7.681*y + 2*t^7.706*y + 2*t^7.982*y + t^7.998*y + t^8.008*y + 3*t^8.023*y + t^8.299*y + 2*t^8.325*y + 2*t^8.34*y - t^8.356*y - t^8.382*y - t^8.407*y + 2*t^8.642*y + 2*t^8.657*y + t^8.959*y t^2.011/g2^12 + g1^2*g2^10*t^2.036 + g1*g2^3*t^2.353 + (2*t^2.67)/g2^4 + (g2^7*t^2.971)/g1 + t^2.987/(g1*g2^11) + g1*g2*t^3.688 + t^4.005/g2^6 + t^4.021/g2^24 + (2*g1^2*t^4.047)/g2^2 + g1^4*g2^20*t^4.072 + (g2^5*t^4.306)/g1 + g1*g2^9*t^4.348 + (g1*t^4.364)/g2^9 + g1^3*g2^13*t^4.389 + g2^20*t^4.649 + (2*t^4.681)/g2^16 + 3*g1^2*g2^6*t^4.706 + t^4.982/(g1*g2^5) + t^4.998/(g1*g2^23) + g1*g2^17*t^5.008 + (3*g1*t^5.023)/g2 + g2^10*t^5.325 + (4*t^5.34)/g2^8 + (2*g2^3*t^5.642)/g1 + t^5.657/(g1*g2^15) + g1^3*g2^11*t^5.724 + (g2^14*t^5.943)/g1^2 + t^5.974/(g1^2*g2^22) - 3*t^6. + t^6.016/g2^18 + t^6.032/g2^36 + g1^2*g2^4*t^6.041 + (2*g1^2*t^6.057)/g2^14 + 2*g1^4*g2^8*t^6.083 + g1^6*g2^30*t^6.109 - (g2^11*t^6.301)/g1 + (3*g1*t^6.358)/g2^3 + (g1*t^6.374)/g2^21 + g1^3*g2^19*t^6.384 + 2*g1^3*g2*t^6.4 + g1^5*g2^23*t^6.426 + g2^8*t^6.66 + (2*t^6.675)/g2^10 + g1^2*g2^30*t^6.685 + (2*t^6.691)/g2^28 + g1^2*g2^12*t^6.701 + (5*g1^2*t^6.717)/g2^6 + 3*g1^4*g2^16*t^6.743 + (g2*t^6.977)/g1 + t^6.992/(g1*g2^17) + g1*g2^23*t^7.002 + t^7.008/(g1*g2^35) + 2*g1*g2^5*t^7.018 + (3*g1*t^7.034)/g2^13 + g1^3*g2^27*t^7.044 + 4*g1^3*g2^9*t^7.06 + (g2^12*t^7.278)/g1^2 - t^7.294/(g1^2*g2^6) + 2*g2^16*t^7.319 - t^7.335/g2^2 + (4*t^7.351)/g2^20 + g1^2*g2^20*t^7.361 + 5*g1^2*g2^2*t^7.377 + (g2^27*t^7.621)/g1 - (g2^9*t^7.636)/g1 + t^7.652/(g1*g2^9) + t^7.668/(g1*g2^27) + g1*g2^13*t^7.678 + (5*g1*t^7.694)/g2^5 + (g1^3*t^7.735)/g2 + g1^5*g2^21*t^7.761 + t^7.985/(g1^2*g2^34) + g2^6*t^7.995 + (3*t^8.011)/g2^12 + t^8.026/g2^30 - 3*g1^2*g2^10*t^8.036 + t^8.042/g2^48 + (g1^2*t^8.052)/g2^8 + (2*g1^2*t^8.068)/g2^26 + g1^4*g2^14*t^8.078 + (3*g1^4*t^8.093)/g2^4 + 2*g1^6*g2^18*t^8.119 + g1^8*g2^40*t^8.145 + t^8.312/(g1*g2) + (2*t^8.327)/(g1*g2^19) - g1*g2^21*t^8.337 - 4*g1*g2^3*t^8.353 + (g1*t^8.369)/g2^15 + (g1*t^8.385)/g2^33 + 4*g1^3*g2^7*t^8.395 + (2*g1^3*t^8.41)/g2^11 + g1^5*g2^29*t^8.42 + 2*g1^5*g2^11*t^8.436 + g1^7*g2^33*t^8.462 + (2*g2^10*t^8.613)/g1^2 - t^8.629/(g1^2*g2^8) + t^8.644/(g1^2*g2^26) - g2^14*t^8.654 - (7*t^8.67)/g2^4 + (2*t^8.686)/g2^22 + g1^2*g2^18*t^8.696 + (2*t^8.702)/g2^40 + 3*g1^2*t^8.712 + g1^4*g2^40*t^8.722 + (5*g1^2*t^8.727)/g2^18 + g1^4*g2^22*t^8.737 + 6*g1^4*g2^4*t^8.753 + 3*g1^6*g2^26*t^8.779 + (g2^21*t^8.914)/g1^3 + (g2^25*t^8.956)/g1 + t^8.961/(g1^3*g2^33) - (5*g2^7*t^8.971)/g1 - (3*t^8.987)/(g1*g2^11) + g1*g2^29*t^8.997 - t^4.335/(g2^2*y) - t^6.346/(g2^14*y) - (g1^2*g2^8*t^6.371)/y - (g1*g2*t^6.688)/y - t^7.005/(g2^6*y) + (g1^2*t^7.047)/(g2^2*y) - t^7.322/(g1*g2^13*y) + (g1*g2^9*t^7.348)/y + (g1*t^7.364)/(g2^9*y) + (g1^3*g2^13*t^7.389)/y + (g2^2*t^7.665)/y + (2*t^7.681)/(g2^16*y) + (2*g1^2*g2^6*t^7.706)/y + (2*t^7.982)/(g1*g2^5*y) + t^7.998/(g1*g2^23*y) + (g1*g2^17*t^8.008)/y + (3*g1*t^8.023)/(g2*y) + t^8.299/(g1^2*g2^12*y) + (2*g2^10*t^8.325)/y + (2*t^8.34)/(g2^8*y) - t^8.356/(g2^26*y) - (g1^2*t^8.382)/(g2^4*y) - (g1^4*g2^18*t^8.407)/y + (2*g2^3*t^8.642)/(g1*y) + (2*t^8.657)/(g1*g2^15*y) + t^8.959/(g1^2*g2^4*y) - (t^4.335*y)/g2^2 - (t^6.346*y)/g2^14 - g1^2*g2^8*t^6.371*y - g1*g2*t^6.688*y - (t^7.005*y)/g2^6 + (g1^2*t^7.047*y)/g2^2 - (t^7.322*y)/(g1*g2^13) + g1*g2^9*t^7.348*y + (g1*t^7.364*y)/g2^9 + g1^3*g2^13*t^7.389*y + g2^2*t^7.665*y + (2*t^7.681*y)/g2^16 + 2*g1^2*g2^6*t^7.706*y + (2*t^7.982*y)/(g1*g2^5) + (t^7.998*y)/(g1*g2^23) + g1*g2^17*t^8.008*y + (3*g1*t^8.023*y)/g2 + (t^8.299*y)/(g1^2*g2^12) + 2*g2^10*t^8.325*y + (2*t^8.34*y)/g2^8 - (t^8.356*y)/g2^26 - (g1^2*t^8.382*y)/g2^4 - g1^4*g2^18*t^8.407*y + (2*g2^3*t^8.642*y)/g1 + (2*t^8.657*y)/(g1*g2^15) + (t^8.959*y)/(g1^2*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55582 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ 0.6948 0.8638 0.8044 [X:[1.334], M:[1.1113, 0.8148, 0.666, 0.9626, 0.8887, 0.7409], q:[0.4074, 0.4813], qb:[0.7778, 0.5562], phi:[0.4443]] t^2.223 + t^2.444 + 2*t^2.666 + t^2.888 + t^2.891 + t^3.777 + t^3.999 + t^4.002 + t^4.221 + t^4.224 + 2*t^4.445 + t^4.667 + t^4.67 + 3*t^4.889 + 3*t^5.11 + t^5.113 + 4*t^5.332 + t^5.335 + t^5.554 + 2*t^5.557 + t^5.781 - 2*t^6. - t^4.333/y - t^4.333*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46626 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ 0.6977 0.8713 0.8008 [M:[1.1105, 0.7877, 0.6686, 0.9913, 0.8895], q:[0.4346, 0.4549], qb:[0.7776, 0.5538], phi:[0.4448]] t^2.006 + t^2.363 + 2*t^2.669 + t^2.965 + t^2.974 + t^3.698 + t^3.942 + t^4.003 + t^4.012 + t^4.064 + t^4.3 + t^4.36 + t^4.369 + t^4.657 + 2*t^4.674 + t^4.726 + t^4.971 + t^4.98 + 2*t^5.032 + t^5.329 + 4*t^5.337 + 2*t^5.634 + t^5.643 + t^5.931 + 2*t^5.948 - 3*t^6. - t^4.334/y - t^4.334*y detail