Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55582 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ 0.6948 0.8638 0.8044 [X:[1.334], M:[1.1113, 0.8148, 0.666, 0.9626, 0.8887, 0.7409], q:[0.4074, 0.4813], qb:[0.7778, 0.5562], phi:[0.4443]] [X:[[36]], M:[[12], [-2], [-36], [-22], [-12], [8]], q:[[-1], [-11]], qb:[[3], [33]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.223 + t^2.444 + 2*t^2.666 + t^2.888 + t^2.891 + t^3.777 + t^3.999 + t^4.002 + t^4.221 + t^4.224 + 2*t^4.445 + t^4.667 + t^4.67 + 3*t^4.889 + 3*t^5.11 + t^5.113 + 4*t^5.332 + t^5.335 + t^5.554 + 2*t^5.557 + t^5.781 - 2*t^6. + 3*t^6.443 + t^6.446 + 3*t^6.665 + 4*t^6.668 + 2*t^6.887 + 4*t^6.89 + 2*t^6.893 + 3*t^7.111 + 2*t^7.114 + 2*t^7.333 + 3*t^7.336 + 4*t^7.555 + t^7.561 + 5*t^7.776 + t^7.779 + 6*t^7.998 + 2*t^8.001 + t^8.004 + 2*t^8.22 + t^8.223 + t^8.226 - 4*t^8.444 + 3*t^8.447 + t^8.663 - 4*t^8.666 + 2*t^8.672 - t^8.888 + t^8.894 - t^4.333/y - t^6.556/y - t^6.777/y - t^6.999/y - t^7.221/y + t^7.445/y + (2*t^7.667)/y + (3*t^7.889)/y + (4*t^8.11)/y + t^8.113/y + (2*t^8.332)/y + t^8.335/y + (2*t^8.554)/y + (2*t^8.557)/y - t^4.333*y - t^6.556*y - t^6.777*y - t^6.999*y - t^7.221*y + t^7.445*y + 2*t^7.667*y + 3*t^7.889*y + 4*t^8.11*y + t^8.113*y + 2*t^8.332*y + t^8.335*y + 2*t^8.554*y + 2*t^8.557*y g1^8*t^2.223 + t^2.444/g1^2 + (2*t^2.666)/g1^12 + t^2.888/g1^22 + g1^32*t^2.891 + t^3.777/g1^8 + t^3.999/g1^18 + g1^36*t^4.002 + t^4.221/g1^28 + g1^26*t^4.224 + 2*g1^16*t^4.445 + g1^6*t^4.667 + g1^60*t^4.67 + (3*t^4.889)/g1^4 + (3*t^5.11)/g1^14 + g1^40*t^5.113 + (4*t^5.332)/g1^24 + g1^30*t^5.335 + t^5.554/g1^34 + 2*g1^20*t^5.557 + g1^64*t^5.781 - 2*t^6. + (3*t^6.443)/g1^20 + g1^34*t^6.446 + (3*t^6.665)/g1^30 + 4*g1^24*t^6.668 + (2*t^6.887)/g1^40 + 4*g1^14*t^6.89 + 2*g1^68*t^6.893 + 3*g1^4*t^7.111 + 2*g1^58*t^7.114 + (2*t^7.333)/g1^6 + 3*g1^48*t^7.336 + (4*t^7.555)/g1^16 + g1^92*t^7.561 + (5*t^7.776)/g1^26 + g1^28*t^7.779 + (6*t^7.998)/g1^36 + 2*g1^18*t^8.001 + g1^72*t^8.004 + (2*t^8.22)/g1^46 + g1^8*t^8.223 + g1^62*t^8.226 - (4*t^8.444)/g1^2 + 3*g1^52*t^8.447 + t^8.663/g1^66 - (4*t^8.666)/g1^12 + 2*g1^96*t^8.672 - t^8.888/g1^22 + g1^86*t^8.894 - t^4.333/(g1^6*y) - (g1^2*t^6.556)/y - t^6.777/(g1^8*y) - t^6.999/(g1^18*y) - t^7.221/(g1^28*y) + (g1^16*t^7.445)/y + (2*g1^6*t^7.667)/y + (3*t^7.889)/(g1^4*y) + (4*t^8.11)/(g1^14*y) + (g1^40*t^8.113)/y + (2*t^8.332)/(g1^24*y) + (g1^30*t^8.335)/y + (2*t^8.554)/(g1^34*y) + (2*g1^20*t^8.557)/y - (t^4.333*y)/g1^6 - g1^2*t^6.556*y - (t^6.777*y)/g1^8 - (t^6.999*y)/g1^18 - (t^7.221*y)/g1^28 + g1^16*t^7.445*y + 2*g1^6*t^7.667*y + (3*t^7.889*y)/g1^4 + (4*t^8.11*y)/g1^14 + g1^40*t^8.113*y + (2*t^8.332*y)/g1^24 + g1^30*t^8.335*y + (2*t^8.554*y)/g1^34 + 2*g1^20*t^8.557*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47124 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ 0.7185 0.912 0.7878 [M:[1.1099, 0.7844, 0.6702, 0.9957, 0.8901, 0.6787], q:[0.4381, 0.4519], qb:[0.7775, 0.5523], phi:[0.445]] t^2.011 + t^2.036 + t^2.353 + 2*t^2.67 + t^2.971 + t^2.987 + t^3.688 + t^4.005 + t^4.021 + 2*t^4.047 + t^4.072 + t^4.306 + t^4.348 + t^4.364 + t^4.389 + t^4.649 + 2*t^4.681 + 3*t^4.706 + t^4.982 + t^4.998 + t^5.008 + 3*t^5.023 + t^5.325 + 4*t^5.34 + 2*t^5.642 + t^5.657 + t^5.724 + t^5.943 + t^5.974 - 3*t^6. - t^4.335/y - t^4.335*y detail