Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1895 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ 0.7185 0.912 0.7878 [X:[], M:[0.6702, 1.1099, 0.9957, 0.6787, 0.8901, 0.7844], q:[0.7775, 0.5523], qb:[0.4519, 0.4381], phi:[0.445]] [X:[], M:[[12, 12], [-4, -4], [7, 11], [-2, -10], [4, 4], [1, -3]], q:[[-1, -1], [-11, -11]], qb:[[4, 0], [0, 4]], phi:[[2, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_4$, $ M_6$, $ M_5$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ M_3$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_4$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_6$, $ M_4M_6$, $ \phi_1q_2^2$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_4M_5$, $ M_6^2$, $ M_4\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_3$, $ M_4q_2\tilde{q}_2$, $ M_3M_4$, $ M_5M_6$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ M_5^2$, $ M_3M_6$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_5q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ q_2^2\tilde{q}_2^2$, $ M_3^2$ . -3 t^2.01 + t^2.04 + t^2.35 + 2*t^2.67 + t^2.97 + t^2.99 + t^3.69 + t^4.01 + t^4.02 + 2*t^4.05 + t^4.07 + t^4.31 + t^4.35 + t^4.36 + t^4.39 + t^4.65 + 2*t^4.68 + 3*t^4.71 + t^4.98 + t^5. + t^5.01 + 3*t^5.02 + t^5.32 + 4*t^5.34 + 2*t^5.64 + t^5.66 + t^5.72 + t^5.94 + t^5.97 - 3*t^6. + t^6.02 + t^6.03 + t^6.04 + 2*t^6.06 + 2*t^6.08 + t^6.11 - t^6.3 + 3*t^6.36 + t^6.37 + t^6.38 + 2*t^6.4 + t^6.43 + t^6.66 + 2*t^6.68 + 3*t^6.69 + t^6.7 + 5*t^6.72 + 3*t^6.74 + t^6.98 + t^6.99 + t^7. + t^7.01 + 2*t^7.02 + 3*t^7.03 + t^7.04 + 4*t^7.06 + t^7.28 - t^7.29 + 2*t^7.32 - t^7.34 + 4*t^7.35 + t^7.36 + 5*t^7.38 + t^7.62 - t^7.64 + t^7.65 + t^7.67 + t^7.68 + 5*t^7.69 + t^7.73 + t^7.76 + t^7.98 + t^7.99 + 3*t^8.01 + t^8.03 - 2*t^8.04 + t^8.05 + 2*t^8.07 + t^8.08 + 3*t^8.09 + 2*t^8.12 + t^8.14 + t^8.31 + 2*t^8.33 - t^8.34 - 4*t^8.35 + t^8.37 + t^8.38 + 4*t^8.39 + 2*t^8.41 + t^8.42 + 2*t^8.44 + t^8.46 + 2*t^8.61 - t^8.63 + t^8.64 - t^8.65 - 7*t^8.67 + 2*t^8.69 + 3*t^8.7 + 3*t^8.71 + t^8.72 + 5*t^8.73 + t^8.74 + 6*t^8.75 + 3*t^8.78 + t^8.91 + 2*t^8.96 - 5*t^8.97 - 3*t^8.99 - t^4.34/y - t^6.35/y - t^6.37/y - t^6.69/y - t^7.01/y + t^7.05/y - t^7.32/y + t^7.35/y + t^7.36/y + t^7.39/y + t^7.66/y + (2*t^7.68)/y + (2*t^7.71)/y + (2*t^7.98)/y + t^8./y + t^8.01/y + (3*t^8.02)/y + t^8.3/y + (2*t^8.32)/y + (2*t^8.34)/y - t^8.36/y - t^8.38/y - t^8.41/y + (2*t^8.64)/y + (2*t^8.66)/y + t^8.96/y - t^4.34*y - t^6.35*y - t^6.37*y - t^6.69*y - t^7.01*y + t^7.05*y - t^7.32*y + t^7.35*y + t^7.36*y + t^7.39*y + t^7.66*y + 2*t^7.68*y + 2*t^7.71*y + 2*t^7.98*y + t^8.*y + t^8.01*y + 3*t^8.02*y + t^8.3*y + 2*t^8.32*y + 2*t^8.34*y - t^8.36*y - t^8.38*y - t^8.41*y + 2*t^8.64*y + 2*t^8.66*y + t^8.96*y g1^12*g2^12*t^2.01 + t^2.04/(g1^2*g2^10) + (g1*t^2.35)/g2^3 + 2*g1^4*g2^4*t^2.67 + t^2.97/(g1^11*g2^7) + g1^7*g2^11*t^2.99 + (g1^3*t^3.69)/g2 + g1^6*g2^6*t^4.01 + g1^24*g2^24*t^4.02 + 2*g1^10*g2^2*t^4.05 + t^4.07/(g1^4*g2^20) + t^4.31/(g1^9*g2^5) + t^4.35/(g1^5*g2^9) + g1^13*g2^9*t^4.36 + t^4.39/(g1*g2^13) + t^4.65/(g1^20*g2^20) + 2*g1^16*g2^16*t^4.68 + (3*g1^2*t^4.71)/g2^6 + g1*g2^5*t^4.98 + g1^19*g2^23*t^5. + t^5.01/(g1^13*g2^17) + 3*g1^5*g2*t^5.02 + t^5.32/(g1^10*g2^10) + 4*g1^8*g2^8*t^5.34 + (2*t^5.64)/(g1^7*g2^3) + g1^11*g2^15*t^5.66 + (g1*t^5.72)/g2^11 + t^5.94/(g1^22*g2^14) + g1^14*g2^22*t^5.97 - 3*t^6. + g1^18*g2^18*t^6.02 + g1^36*g2^36*t^6.03 + (g1^4*t^6.04)/g2^4 + 2*g1^22*g2^14*t^6.06 + (2*g1^8*t^6.08)/g2^8 + t^6.11/(g1^6*g2^30) - t^6.3/(g1^15*g2^11) + 3*g1^7*g2^3*t^6.36 + g1^25*g2^21*t^6.37 + t^6.38/(g1^7*g2^19) + (2*g1^11*t^6.4)/g2 + t^6.43/(g1^3*g2^23) + t^6.66/(g1^8*g2^8) + 2*g1^10*g2^10*t^6.68 + t^6.69/(g1^22*g2^30) + 2*g1^28*g2^28*t^6.69 + t^6.7/(g1^4*g2^12) + 5*g1^14*g2^6*t^6.72 + (3*t^6.74)/g2^16 + t^6.98/(g1^5*g2) + g1^13*g2^17*t^6.99 + t^7./(g1^19*g2^23) + g1^31*g2^35*t^7.01 + (2*t^7.02)/(g1*g2^5) + 3*g1^17*g2^13*t^7.03 + t^7.04/(g1^15*g2^27) + (4*g1^3*t^7.06)/g2^9 + t^7.28/(g1^20*g2^12) - (g2^6*t^7.29)/g1^2 + (2*t^7.32)/(g1^16*g2^16) - g1^2*g2^2*t^7.34 + 4*g1^20*g2^20*t^7.35 + t^7.36/(g1^12*g2^20) + (5*g1^6*t^7.38)/g2^2 + t^7.62/(g1^31*g2^27) - t^7.64/(g1^13*g2^9) + g1^5*g2^9*t^7.65 + g1^23*g2^27*t^7.67 + t^7.68/(g1^9*g2^13) + 5*g1^9*g2^5*t^7.69 + g1^13*g2*t^7.73 + t^7.76/(g1*g2^21) + g1^26*g2^34*t^7.98 + t^7.99/(g1^6*g2^6) + 3*g1^12*g2^12*t^8.01 + g1^30*g2^30*t^8.03 - (3*t^8.04)/(g1^2*g2^10) + g1^48*g2^48*t^8.04 + g1^16*g2^8*t^8.05 + 2*g1^34*g2^26*t^8.07 + (g1^2*t^8.08)/g2^14 + 3*g1^20*g2^4*t^8.09 + (2*g1^6*t^8.12)/g2^18 + t^8.14/(g1^8*g2^40) + (g2*t^8.31)/g1^3 + 2*g1^15*g2^19*t^8.33 - t^8.34/(g1^17*g2^21) - (4*g1*t^8.35)/g2^3 + g1^19*g2^15*t^8.37 + g1^37*g2^33*t^8.38 + (4*g1^5*t^8.39)/g2^7 + 2*g1^23*g2^11*t^8.41 + t^8.42/(g1^9*g2^29) + (2*g1^9*t^8.44)/g2^11 + t^8.46/(g1^5*g2^33) + (2*t^8.61)/(g1^18*g2^10) - g2^8*t^8.63 + g1^18*g2^26*t^8.64 - t^8.65/(g1^14*g2^14) - 7*g1^4*g2^4*t^8.67 + 2*g1^22*g2^22*t^8.69 + t^8.7/(g1^10*g2^18) + 2*g1^40*g2^40*t^8.7 + 3*g1^8*t^8.71 + t^8.72/(g1^24*g2^40) + 5*g1^26*g2^18*t^8.73 + t^8.74/(g1^6*g2^22) + (6*g1^12*t^8.75)/g2^4 + (3*t^8.78)/(g1^2*g2^26) + t^8.91/(g1^33*g2^21) + t^8.96/(g1^29*g2^25) + g1^21*g2^33*t^8.96 - (5*t^8.97)/(g1^11*g2^7) - 3*g1^7*g2^11*t^8.99 - (g1^2*g2^2*t^4.34)/y - (g1^14*g2^14*t^6.35)/y - t^6.37/(g2^8*y) - (g1^3*t^6.69)/(g2*y) - (g1^6*g2^6*t^7.01)/y + (g1^10*g2^2*t^7.05)/y - (g1^9*g2^13*t^7.32)/y + t^7.35/(g1^5*g2^9*y) + (g1^13*g2^9*t^7.36)/y + t^7.39/(g1*g2^13*y) + t^7.66/(g1^2*g2^2*y) + (2*g1^16*g2^16*t^7.68)/y + (2*g1^2*t^7.71)/(g2^6*y) + (2*g1*g2^5*t^7.98)/y + (g1^19*g2^23*t^8.)/y + t^8.01/(g1^13*g2^17*y) + (3*g1^5*g2*t^8.02)/y + (g1^4*g2^12*t^8.3)/y + (2*t^8.32)/(g1^10*g2^10*y) + (2*g1^8*g2^8*t^8.34)/y - (g1^26*g2^26*t^8.36)/y - (g1^12*g2^4*t^8.38)/y - t^8.41/(g1^2*g2^18*y) + (2*t^8.64)/(g1^7*g2^3*y) + (2*g1^11*g2^15*t^8.66)/y + (g2^4*t^8.96)/(g1^4*y) - g1^2*g2^2*t^4.34*y - g1^14*g2^14*t^6.35*y - (t^6.37*y)/g2^8 - (g1^3*t^6.69*y)/g2 - g1^6*g2^6*t^7.01*y + g1^10*g2^2*t^7.05*y - g1^9*g2^13*t^7.32*y + (t^7.35*y)/(g1^5*g2^9) + g1^13*g2^9*t^7.36*y + (t^7.39*y)/(g1*g2^13) + (t^7.66*y)/(g1^2*g2^2) + 2*g1^16*g2^16*t^7.68*y + (2*g1^2*t^7.71*y)/g2^6 + 2*g1*g2^5*t^7.98*y + g1^19*g2^23*t^8.*y + (t^8.01*y)/(g1^13*g2^17) + 3*g1^5*g2*t^8.02*y + g1^4*g2^12*t^8.3*y + (2*t^8.32*y)/(g1^10*g2^10) + 2*g1^8*g2^8*t^8.34*y - g1^26*g2^26*t^8.36*y - g1^12*g2^4*t^8.38*y - (t^8.41*y)/(g1^2*g2^18) + (2*t^8.64*y)/(g1^7*g2^3) + 2*g1^11*g2^15*t^8.66*y + (g2^4*t^8.96*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
551 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_2M_5$ 0.7014 0.8808 0.7963 [X:[], M:[0.6704, 1.1099, 0.9866, 0.6972, 0.8901], q:[0.7775, 0.5521], qb:[0.4613, 0.4288], phi:[0.4451]] t^2.01 + t^2.09 + 2*t^2.67 + t^2.94 + t^2.96 + t^3.62 + t^3.72 + t^4.01 + t^4.02 + 2*t^4.1 + t^4.18 + t^4.28 + t^4.38 + t^4.65 + 2*t^4.68 + 2*t^4.76 + t^4.95 + t^4.97 + t^5.03 + t^5.05 + 3*t^5.34 + 2*t^5.61 + 2*t^5.63 + t^5.71 + t^5.81 + t^5.89 + t^5.92 - 3*t^6. - t^4.34/y - t^4.34*y detail