Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1895 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7185 0.912 0.7878 [M:[0.6702, 1.1099, 0.9957, 0.6787, 0.8901, 0.7844], q:[0.7775, 0.5523], qb:[0.4519, 0.4381], phi:[0.445]] [M:[[12, 12], [-4, -4], [7, 11], [-2, -10], [4, 4], [1, -3]], q:[[-1, -1], [-11, -11]], qb:[[4, 0], [0, 4]], phi:[[2, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$ ${}$ -3 t^2.011 + t^2.036 + t^2.353 + 2*t^2.67 + t^2.971 + t^2.987 + t^3.688 + t^4.005 + t^4.021 + 2*t^4.047 + t^4.072 + t^4.306 + t^4.348 + t^4.364 + t^4.389 + t^4.649 + 2*t^4.681 + 3*t^4.706 + t^4.982 + t^4.998 + t^5.008 + 3*t^5.023 + t^5.325 + 4*t^5.34 + 2*t^5.642 + t^5.657 + t^5.724 + t^5.943 + t^5.974 - 3*t^6. + t^6.016 + t^6.032 + t^6.041 + 2*t^6.057 + 2*t^6.083 + t^6.109 - t^6.301 + 3*t^6.358 + t^6.374 + t^6.384 + 2*t^6.4 + t^6.426 + t^6.66 + 2*t^6.675 + t^6.685 + 2*t^6.691 + t^6.701 + 5*t^6.717 + 3*t^6.743 + t^6.977 + t^6.992 + t^7.002 + t^7.008 + 2*t^7.018 + 3*t^7.034 + t^7.044 + 4*t^7.06 + t^7.278 - t^7.294 + 2*t^7.319 - t^7.335 + 4*t^7.351 + t^7.361 + 5*t^7.377 + t^7.621 - t^7.636 + t^7.652 + t^7.668 + t^7.678 + 5*t^7.694 + t^7.735 + t^7.761 + t^7.985 + t^7.995 + 3*t^8.011 + t^8.026 - 3*t^8.036 + t^8.042 + t^8.052 + 2*t^8.068 + t^8.078 + 3*t^8.093 + 2*t^8.119 + t^8.145 + t^8.312 + 2*t^8.327 - t^8.337 - 4*t^8.353 + t^8.369 + t^8.385 + 4*t^8.395 + 2*t^8.41 + t^8.42 + 2*t^8.436 + t^8.462 + 2*t^8.613 - t^8.629 + t^8.644 - t^8.654 - 7*t^8.67 + 2*t^8.686 + t^8.696 + 2*t^8.702 + 3*t^8.712 + t^8.722 + 5*t^8.727 + t^8.737 + 6*t^8.753 + 3*t^8.779 + t^8.914 + t^8.956 + t^8.961 - 5*t^8.971 - 3*t^8.987 + t^8.997 - t^4.335/y - t^6.346/y - t^6.371/y - t^6.688/y - t^7.005/y + t^7.047/y - t^7.322/y + t^7.348/y + t^7.364/y + t^7.389/y + t^7.665/y + (2*t^7.681)/y + (2*t^7.706)/y + (2*t^7.982)/y + t^7.998/y + t^8.008/y + (3*t^8.023)/y + t^8.299/y + (2*t^8.325)/y + (2*t^8.34)/y - t^8.356/y - t^8.382/y - t^8.407/y + (2*t^8.642)/y + (2*t^8.657)/y + t^8.959/y - t^4.335*y - t^6.346*y - t^6.371*y - t^6.688*y - t^7.005*y + t^7.047*y - t^7.322*y + t^7.348*y + t^7.364*y + t^7.389*y + t^7.665*y + 2*t^7.681*y + 2*t^7.706*y + 2*t^7.982*y + t^7.998*y + t^8.008*y + 3*t^8.023*y + t^8.299*y + 2*t^8.325*y + 2*t^8.34*y - t^8.356*y - t^8.382*y - t^8.407*y + 2*t^8.642*y + 2*t^8.657*y + t^8.959*y g1^12*g2^12*t^2.011 + t^2.036/(g1^2*g2^10) + (g1*t^2.353)/g2^3 + 2*g1^4*g2^4*t^2.67 + t^2.971/(g1^11*g2^7) + g1^7*g2^11*t^2.987 + (g1^3*t^3.688)/g2 + g1^6*g2^6*t^4.005 + g1^24*g2^24*t^4.021 + 2*g1^10*g2^2*t^4.047 + t^4.072/(g1^4*g2^20) + t^4.306/(g1^9*g2^5) + t^4.348/(g1^5*g2^9) + g1^13*g2^9*t^4.364 + t^4.389/(g1*g2^13) + t^4.649/(g1^20*g2^20) + 2*g1^16*g2^16*t^4.681 + (3*g1^2*t^4.706)/g2^6 + g1*g2^5*t^4.982 + g1^19*g2^23*t^4.998 + t^5.008/(g1^13*g2^17) + 3*g1^5*g2*t^5.023 + t^5.325/(g1^10*g2^10) + 4*g1^8*g2^8*t^5.34 + (2*t^5.642)/(g1^7*g2^3) + g1^11*g2^15*t^5.657 + (g1*t^5.724)/g2^11 + t^5.943/(g1^22*g2^14) + g1^14*g2^22*t^5.974 - 3*t^6. + g1^18*g2^18*t^6.016 + g1^36*g2^36*t^6.032 + (g1^4*t^6.041)/g2^4 + 2*g1^22*g2^14*t^6.057 + (2*g1^8*t^6.083)/g2^8 + t^6.109/(g1^6*g2^30) - t^6.301/(g1^15*g2^11) + 3*g1^7*g2^3*t^6.358 + g1^25*g2^21*t^6.374 + t^6.384/(g1^7*g2^19) + (2*g1^11*t^6.4)/g2 + t^6.426/(g1^3*g2^23) + t^6.66/(g1^8*g2^8) + 2*g1^10*g2^10*t^6.675 + t^6.685/(g1^22*g2^30) + 2*g1^28*g2^28*t^6.691 + t^6.701/(g1^4*g2^12) + 5*g1^14*g2^6*t^6.717 + (3*t^6.743)/g2^16 + t^6.977/(g1^5*g2) + g1^13*g2^17*t^6.992 + t^7.002/(g1^19*g2^23) + g1^31*g2^35*t^7.008 + (2*t^7.018)/(g1*g2^5) + 3*g1^17*g2^13*t^7.034 + t^7.044/(g1^15*g2^27) + (4*g1^3*t^7.06)/g2^9 + t^7.278/(g1^20*g2^12) - (g2^6*t^7.294)/g1^2 + (2*t^7.319)/(g1^16*g2^16) - g1^2*g2^2*t^7.335 + 4*g1^20*g2^20*t^7.351 + t^7.361/(g1^12*g2^20) + (5*g1^6*t^7.377)/g2^2 + t^7.621/(g1^31*g2^27) - t^7.636/(g1^13*g2^9) + g1^5*g2^9*t^7.652 + g1^23*g2^27*t^7.668 + t^7.678/(g1^9*g2^13) + 5*g1^9*g2^5*t^7.694 + g1^13*g2*t^7.735 + t^7.761/(g1*g2^21) + g1^26*g2^34*t^7.985 + t^7.995/(g1^6*g2^6) + 3*g1^12*g2^12*t^8.011 + g1^30*g2^30*t^8.026 - (3*t^8.036)/(g1^2*g2^10) + g1^48*g2^48*t^8.042 + g1^16*g2^8*t^8.052 + 2*g1^34*g2^26*t^8.068 + (g1^2*t^8.078)/g2^14 + 3*g1^20*g2^4*t^8.093 + (2*g1^6*t^8.119)/g2^18 + t^8.145/(g1^8*g2^40) + (g2*t^8.312)/g1^3 + 2*g1^15*g2^19*t^8.327 - t^8.337/(g1^17*g2^21) - (4*g1*t^8.353)/g2^3 + g1^19*g2^15*t^8.369 + g1^37*g2^33*t^8.385 + (4*g1^5*t^8.395)/g2^7 + 2*g1^23*g2^11*t^8.41 + t^8.42/(g1^9*g2^29) + (2*g1^9*t^8.436)/g2^11 + t^8.462/(g1^5*g2^33) + (2*t^8.613)/(g1^18*g2^10) - g2^8*t^8.629 + g1^18*g2^26*t^8.644 - t^8.654/(g1^14*g2^14) - 7*g1^4*g2^4*t^8.67 + 2*g1^22*g2^22*t^8.686 + t^8.696/(g1^10*g2^18) + 2*g1^40*g2^40*t^8.702 + 3*g1^8*t^8.712 + t^8.722/(g1^24*g2^40) + 5*g1^26*g2^18*t^8.727 + t^8.737/(g1^6*g2^22) + (6*g1^12*t^8.753)/g2^4 + (3*t^8.779)/(g1^2*g2^26) + t^8.914/(g1^33*g2^21) + t^8.956/(g1^29*g2^25) + g1^21*g2^33*t^8.961 - (5*t^8.971)/(g1^11*g2^7) - 3*g1^7*g2^11*t^8.987 + t^8.997/(g1^25*g2^29) - (g1^2*g2^2*t^4.335)/y - (g1^14*g2^14*t^6.346)/y - t^6.371/(g2^8*y) - (g1^3*t^6.688)/(g2*y) - (g1^6*g2^6*t^7.005)/y + (g1^10*g2^2*t^7.047)/y - (g1^9*g2^13*t^7.322)/y + t^7.348/(g1^5*g2^9*y) + (g1^13*g2^9*t^7.364)/y + t^7.389/(g1*g2^13*y) + t^7.665/(g1^2*g2^2*y) + (2*g1^16*g2^16*t^7.681)/y + (2*g1^2*t^7.706)/(g2^6*y) + (2*g1*g2^5*t^7.982)/y + (g1^19*g2^23*t^7.998)/y + t^8.008/(g1^13*g2^17*y) + (3*g1^5*g2*t^8.023)/y + (g1^4*g2^12*t^8.299)/y + (2*t^8.325)/(g1^10*g2^10*y) + (2*g1^8*g2^8*t^8.34)/y - (g1^26*g2^26*t^8.356)/y - (g1^12*g2^4*t^8.382)/y - t^8.407/(g1^2*g2^18*y) + (2*t^8.642)/(g1^7*g2^3*y) + (2*g1^11*g2^15*t^8.657)/y + (g2^4*t^8.959)/(g1^4*y) - g1^2*g2^2*t^4.335*y - g1^14*g2^14*t^6.346*y - (t^6.371*y)/g2^8 - (g1^3*t^6.688*y)/g2 - g1^6*g2^6*t^7.005*y + g1^10*g2^2*t^7.047*y - g1^9*g2^13*t^7.322*y + (t^7.348*y)/(g1^5*g2^9) + g1^13*g2^9*t^7.364*y + (t^7.389*y)/(g1*g2^13) + (t^7.665*y)/(g1^2*g2^2) + 2*g1^16*g2^16*t^7.681*y + (2*g1^2*t^7.706*y)/g2^6 + 2*g1*g2^5*t^7.982*y + g1^19*g2^23*t^7.998*y + (t^8.008*y)/(g1^13*g2^17) + 3*g1^5*g2*t^8.023*y + g1^4*g2^12*t^8.299*y + (2*t^8.325*y)/(g1^10*g2^10) + 2*g1^8*g2^8*t^8.34*y - g1^26*g2^26*t^8.356*y - g1^12*g2^4*t^8.382*y - (t^8.407*y)/(g1^2*g2^18) + (2*t^8.642*y)/(g1^7*g2^3) + 2*g1^11*g2^15*t^8.657*y + (g2^4*t^8.959*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
551 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{5}$ 0.7014 0.8808 0.7963 [M:[0.6704, 1.1099, 0.9866, 0.6972, 0.8901], q:[0.7775, 0.5521], qb:[0.4613, 0.4288], phi:[0.4451]] t^2.011 + t^2.092 + 2*t^2.67 + t^2.943 + t^2.96 + t^3.619 + t^3.716 + t^4.006 + t^4.023 + 2*t^4.103 + t^4.183 + t^4.278 + t^4.375 + t^4.648 + 2*t^4.682 + 2*t^4.762 + t^4.954 + t^4.971 + t^5.035 + t^5.052 + 3*t^5.341 + 2*t^5.613 + 2*t^5.63 + t^5.711 + t^5.808 + t^5.886 + t^5.92 - 3*t^6. - t^4.335/y - t^4.335*y detail