Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47112 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ q_2\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ | 0.5911 | 0.7853 | 0.7527 | [X:[], M:[1.0534, 0.7328, 0.9466, 0.6871, 0.8397], q:[0.7634, 0.1832], qb:[0.5039, 0.6565], phi:[0.4733]] | [X:[], M:[[-4], [20], [4], [-14], [12]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ q_2\tilde{q}_1$, $ M_2$, $ M_5$, $ \phi_1q_2^2$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_2M_4$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4M_5$, $ M_4\phi_1q_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_2M_5$, $ M_2\phi_1q_2^2$, $ M_2q_2\tilde{q}_2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_5^2$, $ M_2\phi_1^2$, $ M_5\phi_1q_2^2$, $ \phi_1^2q_2^4$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ | $M_5\tilde{q}_1\tilde{q}_2$ | -2 | 2*t^2.06 + t^2.2 + 3*t^2.52 + 2*t^2.84 + t^3.48 + 3*t^4.12 + 3*t^4.26 + t^4.4 + t^4.44 + 5*t^4.58 + 3*t^4.72 + 5*t^4.9 + 7*t^5.04 + 7*t^5.36 + t^5.54 + 2*t^5.68 - 2*t^6. + 4*t^6.18 + 4*t^6.32 + t^6.46 + 2*t^6.5 + t^6.59 + 6*t^6.64 + 6*t^6.78 + 3*t^6.92 + 8*t^6.96 + 12*t^7.1 + 7*t^7.24 + t^7.28 + 9*t^7.42 + 14*t^7.56 + 3*t^7.74 + 13*t^7.88 + t^7.92 - 7*t^8.06 + 2*t^8.2 + 5*t^8.24 + 2*t^8.38 - 7*t^8.52 + 3*t^8.57 + t^8.66 + 7*t^8.7 + t^8.79 - 4*t^8.84 + t^8.89 + 2*t^8.98 - t^4.42/y - t^6.48/y - t^6.62/y - t^6.94/y + t^7.12/y + t^7.26/y + (7*t^7.58)/y + (3*t^7.72)/y + (5*t^7.9)/y + (5*t^8.04)/y + t^8.22/y + (7*t^8.36)/y + t^8.54/y + t^8.68/y - t^8.82/y - t^4.42*y - t^6.48*y - t^6.62*y - t^6.94*y + t^7.12*y + t^7.26*y + 7*t^7.58*y + 3*t^7.72*y + 5*t^7.9*y + 5*t^8.04*y + t^8.22*y + 7*t^8.36*y + t^8.54*y + t^8.68*y - t^8.82*y | (2*t^2.06)/g1^14 + g1^20*t^2.2 + 3*g1^12*t^2.52 + 2*g1^4*t^2.84 + t^3.48/g1^12 + (3*t^4.12)/g1^28 + 3*g1^6*t^4.26 + g1^40*t^4.4 + t^4.44/g1^36 + (5*t^4.58)/g1^2 + 3*g1^32*t^4.72 + (5*t^4.9)/g1^10 + 7*g1^24*t^5.04 + 7*g1^16*t^5.36 + t^5.54/g1^26 + 2*g1^8*t^5.68 - 2*t^6. + (4*t^6.18)/g1^42 + (4*t^6.32)/g1^8 + g1^26*t^6.46 + (2*t^6.5)/g1^50 + g1^60*t^6.59 + (6*t^6.64)/g1^16 + 6*g1^18*t^6.78 + 3*g1^52*t^6.92 + (8*t^6.96)/g1^24 + 12*g1^10*t^7.1 + 7*g1^44*t^7.24 + t^7.28/g1^32 + 9*g1^2*t^7.42 + 14*g1^36*t^7.56 + (3*t^7.74)/g1^6 + 13*g1^28*t^7.88 + t^7.92/g1^48 - (7*t^8.06)/g1^14 + 2*g1^20*t^8.2 + (5*t^8.24)/g1^56 + (2*t^8.38)/g1^22 - 7*g1^12*t^8.52 + (3*t^8.57)/g1^64 + g1^46*t^8.66 + (7*t^8.7)/g1^30 + g1^80*t^8.79 - 4*g1^4*t^8.84 + t^8.89/g1^72 + 2*g1^38*t^8.98 - (g1^2*t^4.42)/y - t^6.48/(g1^12*y) - (g1^22*t^6.62)/y - (g1^14*t^6.94)/y + t^7.12/(g1^28*y) + (g1^6*t^7.26)/y + (7*t^7.58)/(g1^2*y) + (3*g1^32*t^7.72)/y + (5*t^7.9)/(g1^10*y) + (5*g1^24*t^8.04)/y + t^8.22/(g1^18*y) + (7*g1^16*t^8.36)/y + t^8.54/(g1^26*y) + (g1^8*t^8.68)/y - (g1^42*t^8.82)/y - g1^2*t^4.42*y - (t^6.48*y)/g1^12 - g1^22*t^6.62*y - g1^14*t^6.94*y + (t^7.12*y)/g1^28 + g1^6*t^7.26*y + (7*t^7.58*y)/g1^2 + 3*g1^32*t^7.72*y + (5*t^7.9*y)/g1^10 + 5*g1^24*t^8.04*y + (t^8.22*y)/g1^18 + 7*g1^16*t^8.36*y + (t^8.54*y)/g1^26 + g1^8*t^8.68*y - g1^42*t^8.82*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46652 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ q_2\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1q_2\tilde{q}_2$ | 0.5776 | 0.7619 | 0.758 | [X:[], M:[1.0501, 0.7495, 0.9499, 0.6753], q:[0.7625, 0.1874], qb:[0.4879, 0.6623], phi:[0.475]] | 2*t^2.03 + t^2.25 + 2*t^2.55 + 2*t^2.85 + 2*t^3.45 + 3*t^4.05 + 3*t^4.27 + t^4.35 + t^4.5 + 3*t^4.58 + 2*t^4.8 + 5*t^4.88 + 4*t^5.1 + 5*t^5.4 + 3*t^5.48 + 3*t^5.7 - t^6. - t^4.42/y - t^4.42*y | detail |