Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46652 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ q_2\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.5776 0.7619 0.758 [X:[], M:[1.0501, 0.7495, 0.9499, 0.6753], q:[0.7625, 0.1874], qb:[0.4879, 0.6623], phi:[0.475]] [X:[], M:[[-4], [20], [4], [-14]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ q_2\tilde{q}_1$, $ M_2$, $ \phi_1q_2^2$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_2M_4$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_2\phi_1q_2^2$, $ M_2q_2\tilde{q}_2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_2\phi_1^2$, $ \phi_1^2q_2^4$, $ \phi_1q_2^3\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4\phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2\tilde{q}_1^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ M_2\phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ $\phi_1^2q_2^3\tilde{q}_1$ -1 2*t^2.03 + t^2.25 + 2*t^2.55 + 2*t^2.85 + 2*t^3.45 + 3*t^4.05 + 3*t^4.27 + t^4.35 + t^4.5 + 3*t^4.58 + 2*t^4.8 + 5*t^4.88 + 4*t^5.1 + 5*t^5.4 + 3*t^5.48 + 3*t^5.7 - t^6. + 4*t^6.08 + 6*t^6.3 + 2*t^6.38 + t^6.52 + 3*t^6.6 + t^6.75 + 3*t^6.82 + 9*t^6.9 + 2*t^7.05 + 7*t^7.12 + t^7.2 + 4*t^7.35 + 4*t^7.42 + 3*t^7.5 + 7*t^7.65 + 6*t^7.73 + 2*t^7.8 + 7*t^7.95 - 5*t^8.03 + 5*t^8.1 + 2*t^8.25 + 7*t^8.33 + 3*t^8.4 - t^8.55 + 3*t^8.63 + t^8.7 + t^8.77 - 3*t^8.85 + 11*t^8.93 + t^8.99 - t^4.42/y - t^6.45/y - t^6.67/y + t^7.05/y + t^7.27/y + (5*t^7.58)/y + (2*t^7.8)/y + (4*t^7.88)/y + (3*t^8.1)/y + t^8.18/y + (5*t^8.4)/y + (3*t^8.48)/y + (2*t^8.7)/y - t^8.92/y - t^4.42*y - t^6.45*y - t^6.67*y + t^7.05*y + t^7.27*y + 5*t^7.58*y + 2*t^7.8*y + 4*t^7.88*y + 3*t^8.1*y + t^8.18*y + 5*t^8.4*y + 3*t^8.48*y + 2*t^8.7*y - t^8.92*y (2*t^2.03)/g1^14 + g1^20*t^2.25 + 2*g1^12*t^2.55 + 2*g1^4*t^2.85 + (2*t^3.45)/g1^12 + (3*t^4.05)/g1^28 + 3*g1^6*t^4.27 + t^4.35/g1^36 + g1^40*t^4.5 + (3*t^4.58)/g1^2 + 2*g1^32*t^4.8 + (5*t^4.88)/g1^10 + 4*g1^24*t^5.1 + 5*g1^16*t^5.4 + (3*t^5.48)/g1^26 + 3*g1^8*t^5.7 - t^6. + (4*t^6.08)/g1^42 + (6*t^6.3)/g1^8 + (2*t^6.38)/g1^50 + g1^26*t^6.52 + (3*t^6.6)/g1^16 + g1^60*t^6.75 + 3*g1^18*t^6.82 + (9*t^6.9)/g1^24 + 2*g1^52*t^7.05 + 7*g1^10*t^7.12 + t^7.2/g1^32 + 4*g1^44*t^7.35 + 4*g1^2*t^7.42 + (3*t^7.5)/g1^40 + 7*g1^36*t^7.65 + (6*t^7.73)/g1^6 + (2*t^7.8)/g1^48 + 7*g1^28*t^7.95 - (5*t^8.03)/g1^14 + (5*t^8.1)/g1^56 + 2*g1^20*t^8.25 + (7*t^8.33)/g1^22 + (3*t^8.4)/g1^64 - g1^12*t^8.55 + (3*t^8.63)/g1^30 + t^8.7/g1^72 + g1^46*t^8.77 - 3*g1^4*t^8.85 + (11*t^8.93)/g1^38 + g1^80*t^8.99 - (g1^2*t^4.42)/y - t^6.45/(g1^12*y) - (g1^22*t^6.67)/y + t^7.05/(g1^28*y) + (g1^6*t^7.27)/y + (5*t^7.58)/(g1^2*y) + (2*g1^32*t^7.8)/y + (4*t^7.88)/(g1^10*y) + (3*g1^24*t^8.1)/y + t^8.18/(g1^18*y) + (5*g1^16*t^8.4)/y + (3*t^8.48)/(g1^26*y) + (2*g1^8*t^8.7)/y - (g1^42*t^8.92)/y - g1^2*t^4.42*y - (t^6.45*y)/g1^12 - g1^22*t^6.67*y + (t^7.05*y)/g1^28 + g1^6*t^7.27*y + (5*t^7.58*y)/g1^2 + 2*g1^32*t^7.8*y + (4*t^7.88*y)/g1^10 + 3*g1^24*t^8.1*y + (t^8.18*y)/g1^18 + 5*g1^16*t^8.4*y + (3*t^8.48*y)/g1^26 + 2*g1^8*t^8.7*y - g1^42*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47112 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ q_2\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ 0.5911 0.7853 0.7527 [X:[], M:[1.0534, 0.7328, 0.9466, 0.6871, 0.8397], q:[0.7634, 0.1832], qb:[0.5039, 0.6565], phi:[0.4733]] 2*t^2.06 + t^2.2 + 3*t^2.52 + 2*t^2.84 + t^3.48 + 3*t^4.12 + 3*t^4.26 + t^4.4 + t^4.44 + 5*t^4.58 + 3*t^4.72 + 5*t^4.9 + 7*t^5.04 + 7*t^5.36 + t^5.54 + 2*t^5.68 - 2*t^6. - t^4.42/y - t^4.42*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46203 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ q_2\tilde{q}_1\tilde{q}_2^2$ 0.5568 0.7209 0.7723 [X:[], M:[1.0504, 0.7481, 0.9496], q:[0.7626, 0.187], qb:[0.4893, 0.6618], phi:[0.4748]] t^2.03 + t^2.24 + 2*t^2.55 + 2*t^2.85 + 2*t^3.45 + t^3.97 + t^4.06 + 2*t^4.27 + t^4.36 + t^4.49 + t^4.58 + 2*t^4.79 + 3*t^4.88 + 4*t^5.09 + 5*t^5.4 + t^5.48 + 3*t^5.7 - t^4.42/y - t^4.42*y detail