Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2404 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ 0.5911 0.7853 0.7527 [X:[], M:[1.0534, 0.8397, 0.9466, 1.1603, 0.8397, 0.6871, 0.7328], q:[0.7634, 0.1832], qb:[0.5039, 0.6565], phi:[0.4733]] [X:[], M:[[-4], [12], [4], [-12], [12], [-14], [20]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ q_2\tilde{q}_1$, $ M_7$, $ M_5$, $ \phi_1q_2^2$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ M_4$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_6M_7$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_7^2$, $ \phi_1\tilde{q}_1^2$, $ M_5M_6$, $ M_6\phi_1q_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_7$, $ M_7\phi_1q_2^2$, $ M_7q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_5\phi_1q_2^2$, $ \phi_1^2q_2^4$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_3^2$, $ M_4M_7$, $ M_3\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_2$ $M_4\phi_1q_2^2$, $ M_4q_2\tilde{q}_2$ -2 2*t^2.06 + t^2.2 + 3*t^2.52 + 2*t^2.84 + t^3.48 + 3*t^4.12 + 3*t^4.26 + t^4.4 + t^4.44 + 5*t^4.58 + 3*t^4.72 + 5*t^4.9 + 7*t^5.04 + 7*t^5.36 + t^5.54 + 2*t^5.68 - 2*t^6. + 4*t^6.18 + 4*t^6.32 + t^6.46 + 2*t^6.5 + t^6.59 + 6*t^6.64 + 6*t^6.78 + 3*t^6.92 + 8*t^6.96 + 12*t^7.1 + 7*t^7.24 + t^7.28 + 9*t^7.42 + 14*t^7.56 + 3*t^7.74 + 13*t^7.88 + t^7.92 - 7*t^8.06 + 2*t^8.2 + 5*t^8.24 + 2*t^8.38 - 7*t^8.52 + 3*t^8.57 + t^8.66 + 7*t^8.7 + t^8.79 - 4*t^8.84 + t^8.89 + 2*t^8.98 - t^4.42/y - t^6.48/y - t^6.62/y - t^6.94/y + t^7.12/y + t^7.26/y + (7*t^7.58)/y + (3*t^7.72)/y + (5*t^7.9)/y + (5*t^8.04)/y + t^8.22/y + (7*t^8.36)/y + t^8.54/y + t^8.68/y - t^8.82/y - t^4.42*y - t^6.48*y - t^6.62*y - t^6.94*y + t^7.12*y + t^7.26*y + 7*t^7.58*y + 3*t^7.72*y + 5*t^7.9*y + 5*t^8.04*y + t^8.22*y + 7*t^8.36*y + t^8.54*y + t^8.68*y - t^8.82*y (2*t^2.06)/g1^14 + g1^20*t^2.2 + 3*g1^12*t^2.52 + 2*g1^4*t^2.84 + t^3.48/g1^12 + (3*t^4.12)/g1^28 + 3*g1^6*t^4.26 + g1^40*t^4.4 + t^4.44/g1^36 + (5*t^4.58)/g1^2 + 3*g1^32*t^4.72 + (5*t^4.9)/g1^10 + 7*g1^24*t^5.04 + 7*g1^16*t^5.36 + t^5.54/g1^26 + 2*g1^8*t^5.68 - 2*t^6. + (4*t^6.18)/g1^42 + (4*t^6.32)/g1^8 + g1^26*t^6.46 + (2*t^6.5)/g1^50 + g1^60*t^6.59 + (6*t^6.64)/g1^16 + 6*g1^18*t^6.78 + 3*g1^52*t^6.92 + (8*t^6.96)/g1^24 + 12*g1^10*t^7.1 + 7*g1^44*t^7.24 + t^7.28/g1^32 + 9*g1^2*t^7.42 + 14*g1^36*t^7.56 + (3*t^7.74)/g1^6 + 13*g1^28*t^7.88 + t^7.92/g1^48 - (7*t^8.06)/g1^14 + 2*g1^20*t^8.2 + (5*t^8.24)/g1^56 + (2*t^8.38)/g1^22 - 7*g1^12*t^8.52 + (3*t^8.57)/g1^64 + g1^46*t^8.66 + (7*t^8.7)/g1^30 + g1^80*t^8.79 - 4*g1^4*t^8.84 + t^8.89/g1^72 + 2*g1^38*t^8.98 - (g1^2*t^4.42)/y - t^6.48/(g1^12*y) - (g1^22*t^6.62)/y - (g1^14*t^6.94)/y + t^7.12/(g1^28*y) + (g1^6*t^7.26)/y + (7*t^7.58)/(g1^2*y) + (3*g1^32*t^7.72)/y + (5*t^7.9)/(g1^10*y) + (5*g1^24*t^8.04)/y + t^8.22/(g1^18*y) + (7*g1^16*t^8.36)/y + t^8.54/(g1^26*y) + (g1^8*t^8.68)/y - (g1^42*t^8.82)/y - g1^2*t^4.42*y - (t^6.48*y)/g1^12 - g1^22*t^6.62*y - g1^14*t^6.94*y + (t^7.12*y)/g1^28 + g1^6*t^7.26*y + (7*t^7.58*y)/g1^2 + 3*g1^32*t^7.72*y + (5*t^7.9*y)/g1^10 + 5*g1^24*t^8.04*y + (t^8.22*y)/g1^18 + 7*g1^16*t^8.36*y + (t^8.54*y)/g1^26 + g1^8*t^8.68*y - g1^42*t^8.82*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1340 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.5717 0.7497 0.7625 [X:[], M:[1.0504, 0.8487, 0.9496, 1.1513, 0.8487, 0.6766], q:[0.7626, 0.1869], qb:[0.4896, 0.6617], phi:[0.4748]] 2*t^2.03 + 3*t^2.55 + 2*t^2.85 + t^3.45 + t^3.76 + 3*t^4.06 + t^4.27 + t^4.36 + 5*t^4.58 + 5*t^4.88 + 5*t^5.09 + 7*t^5.39 + t^5.48 + t^5.7 + 2*t^5.79 - 2*t^6. - t^4.42/y - t^4.42*y detail