Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47083 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{2}^{2}$ 0.6958 0.8638 0.8055 [M:[0.7814, 0.9672, 0.9672, 0.7814, 1.1257, 0.8743], q:[0.4372, 0.7814], qb:[0.5957, 0.4372], phi:[0.4372]] [M:[[3, 1], [-7, 1], [-11, -1], [-1, -1], [4, 0], [-4, 0]], q:[[-4, -1], [1, 0]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}^{2}$ ${}$ -5 2*t^2.344 + 2*t^2.623 + 2*t^2.902 + 3*t^3.934 + t^4.131 + 2*t^4.41 + 3*t^4.689 + t^4.885 + 4*t^4.967 + 7*t^5.246 + 2*t^5.524 + 3*t^5.803 - 5*t^6. + 4*t^6.279 + 5*t^6.557 + 4*t^6.754 + 4*t^6.836 + 6*t^7.033 + 2*t^7.23 + 3*t^7.311 + t^7.508 + 10*t^7.59 - 2*t^7.787 + 13*t^7.869 - t^8.066 + 8*t^8.147 - 8*t^8.344 + 3*t^8.426 - 5*t^8.623 + 4*t^8.705 + t^8.82 - 2*t^8.902 - t^4.311/y - (2*t^6.656)/y - t^6.934/y - (2*t^7.213)/y + (2*t^7.41)/y + (2*t^7.689)/y + (6*t^7.967)/y + (5*t^8.246)/y + (4*t^8.524)/y + t^8.803/y - t^4.311*y - 2*t^6.656*y - t^6.934*y - 2*t^7.213*y + 2*t^7.41*y + 2*t^7.689*y + 6*t^7.967*y + 5*t^8.246*y + 4*t^8.524*y + t^8.803*y t^2.344/(g1*g2) + g1^3*g2*t^2.344 + (2*t^2.623)/g1^4 + t^2.902/(g1^11*g2) + (g2*t^2.902)/g1^7 + t^3.934/g1^6 + t^3.934/(g1^10*g2^2) + (g2^2*t^3.934)/g1^2 + g1^12*t^4.131 + (g1^5*t^4.41)/g2 + g1^9*g2*t^4.41 + g1^2*t^4.689 + t^4.689/(g1^2*g2^2) + g1^6*g2^2*t^4.689 + g1^20*t^4.885 + (2*t^4.967)/(g1^5*g2) + (2*g2*t^4.967)/g1 + (5*t^5.246)/g1^8 + t^5.246/(g1^12*g2^2) + (g2^2*t^5.246)/g1^4 + t^5.524/(g1^15*g2) + (g2*t^5.524)/g1^11 + t^5.803/g1^18 + t^5.803/(g1^22*g2^2) + (g2^2*t^5.803)/g1^14 - 3*t^6. - t^6./(g1^4*g2^2) - g1^4*g2^2*t^6. + t^6.279/(g1^11*g2^3) + t^6.279/(g1^7*g2) + (g2*t^6.279)/g1^3 + g1*g2^3*t^6.279 + t^6.557/g1^10 + (2*t^6.557)/(g1^14*g2^2) + (2*g2^2*t^6.557)/g1^6 + 2*g1^8*t^6.754 + (g1^4*t^6.754)/g2^2 + g1^12*g2^2*t^6.754 + t^6.836/(g1^21*g2^3) + t^6.836/(g1^17*g2) + (g2*t^6.836)/g1^13 + (g2^3*t^6.836)/g1^9 + t^7.033/(g1^3*g2^3) + (2*g1*t^7.033)/g2 + 2*g1^5*g2*t^7.033 + g1^9*g2^3*t^7.033 + (g1^19*t^7.23)/g2 + g1^23*g2*t^7.23 + t^7.311/g1^2 + t^7.311/(g1^6*g2^2) + g1^2*g2^2*t^7.311 + g1^16*t^7.508 + t^7.59/(g1^13*g2^3) + (4*t^7.59)/(g1^9*g2) + (4*g2*t^7.59)/g1^5 + (g2^3*t^7.59)/g1 - (g1^9*t^7.787)/g2 - g1^13*g2*t^7.787 + (7*t^7.869)/g1^12 + t^7.869/(g1^20*g2^4) + (2*t^7.869)/(g1^16*g2^2) + (2*g2^2*t^7.869)/g1^8 + (g2^4*t^7.869)/g1^4 - g1^6*t^8.066 + t^8.147/(g1^23*g2^3) + (3*t^8.147)/(g1^19*g2) + (3*g2*t^8.147)/g1^15 + (g2^3*t^8.147)/g1^11 - (4*t^8.344)/(g1*g2) - 4*g1^3*g2*t^8.344 + t^8.426/g1^22 + t^8.426/(g1^26*g2^2) + (g2^2*t^8.426)/g1^18 - (5*t^8.623)/g1^4 + t^8.623/(g1^12*g2^4) - t^8.623/(g1^8*g2^2) - g2^2*t^8.623 + g1^4*g2^4*t^8.623 + t^8.705/(g1^33*g2^3) + t^8.705/(g1^29*g2) + (g2*t^8.705)/g1^25 + (g2^3*t^8.705)/g1^21 - g1^14*t^8.82 + (g1^10*t^8.82)/g2^2 + g1^18*g2^2*t^8.82 + t^8.902/(g1^15*g2^3) - (2*t^8.902)/(g1^11*g2) - (2*g2*t^8.902)/g1^7 + (g2^3*t^8.902)/g1^3 - t^4.311/(g1^2*y) - t^6.656/(g1^3*g2*y) - (g1*g2*t^6.656)/y - t^6.934/(g1^6*y) - t^7.213/(g1^13*g2*y) - (g2*t^7.213)/(g1^9*y) + (g1^5*t^7.41)/(g2*y) + (g1^9*g2*t^7.41)/y + (2*g1^2*t^7.689)/y + (3*t^7.967)/(g1^5*g2*y) + (3*g2*t^7.967)/(g1*y) + (3*t^8.246)/(g1^8*y) + t^8.246/(g1^12*g2^2*y) + (g2^2*t^8.246)/(g1^4*y) + (2*t^8.524)/(g1^15*g2*y) + (2*g2*t^8.524)/(g1^11*y) + t^8.803/(g1^18*y) - (t^4.311*y)/g1^2 - (t^6.656*y)/(g1^3*g2) - g1*g2*t^6.656*y - (t^6.934*y)/g1^6 - (t^7.213*y)/(g1^13*g2) - (g2*t^7.213*y)/g1^9 + (g1^5*t^7.41*y)/g2 + g1^9*g2*t^7.41*y + 2*g1^2*t^7.689*y + (3*t^7.967*y)/(g1^5*g2) + (3*g2*t^7.967*y)/g1 + (3*t^8.246*y)/g1^8 + (t^8.246*y)/(g1^12*g2^2) + (g2^2*t^8.246*y)/g1^4 + (2*t^8.524*y)/(g1^15*g2) + (2*g2*t^8.524*y)/g1^11 + (t^8.803*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
52059 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{6}$ 0.6838 0.8483 0.8061 [M:[0.7364, 1.0167, 1.0879, 0.8076, 1.0879, 0.9121], q:[0.4916, 0.772], qb:[0.4916, 0.4205], phi:[0.4561]] t^2.209 + t^2.423 + 2*t^2.736 + t^3.05 + t^3.264 + t^3.791 + t^3.891 + 2*t^4.105 + 3*t^4.318 + t^4.418 + t^4.632 + t^4.845 + 2*t^4.946 + 2*t^5.159 + t^5.259 + 5*t^5.473 + t^5.686 - 2*t^6. - t^4.368/y - t^4.368*y detail {a: 144062/210681, c: 357433/421362, M1: 338/459, M2: 1400/1377, M3: 1498/1377, M4: 1112/1377, M5: 1498/1377, M6: 1256/1377, q1: 677/1377, q2: 1063/1377, qb1: 677/1377, qb2: 193/459, phi1: 628/1377}
54820 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}^{2}$ 0.6949 0.8621 0.8061 [M:[0.7674, 0.9767, 1.0, 0.7907, 1.1163, 0.8837], q:[0.4535, 0.7791], qb:[0.5698, 0.4302], phi:[0.4419]] t^2.302 + t^2.372 + 2*t^2.651 + t^2.93 + t^3. + t^3.907 + t^3.977 + 2*t^4.047 + t^4.326 + t^4.396 + t^4.604 + t^4.674 + 2*t^4.744 + 2*t^4.953 + 2*t^5.023 + t^5.232 + 5*t^5.302 + t^5.372 + t^5.581 + t^5.651 + t^5.86 - 2*t^6. - t^4.326/y - t^4.326*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46615 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ 0.7171 0.8807 0.8142 [M:[0.9214, 0.9214, 0.9214, 0.9214, 1.0786, 0.9214], q:[0.4607, 0.6179], qb:[0.6179, 0.4607], phi:[0.4607]] 6*t^2.764 + t^3.707 + 3*t^4.146 + 4*t^4.618 + 3*t^5.09 + 17*t^5.528 - 8*t^6. - t^4.382/y - t^4.382*y detail