Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
54820 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}^{2}$ | 0.6949 | 0.8621 | 0.8061 | [M:[0.7674, 0.9767, 1.0, 0.7907, 1.1163, 0.8837], q:[0.4535, 0.7791], qb:[0.5698, 0.4302], phi:[0.4419]] | [M:[[8], [18], [0], [-10], [-4], [4]], q:[[-7], [-1]], qb:[[-11], [11]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}^{2}$ | ${}$ | -2 | t^2.302 + t^2.372 + 2*t^2.651 + t^2.93 + t^3. + t^3.907 + t^3.977 + 2*t^4.047 + t^4.326 + t^4.396 + t^4.604 + t^4.674 + 2*t^4.744 + 2*t^4.953 + 2*t^5.023 + t^5.232 + 5*t^5.302 + t^5.372 + t^5.581 + t^5.651 + t^5.86 - 2*t^6. - t^6.07 + t^6.209 + t^6.279 + t^6.349 + t^6.419 + 2*t^6.558 + 2*t^6.628 + 4*t^6.698 + t^6.768 + t^6.837 + 2*t^6.907 + 3*t^6.977 + 4*t^7.047 + 2*t^7.117 + t^7.256 + t^7.326 + 2*t^7.396 + t^7.535 + 4*t^7.604 + 3*t^7.674 + t^7.813 + 2*t^7.883 + 7*t^7.953 + t^8.023 + t^8.093 + t^8.162 + 3*t^8.232 - t^8.302 - 3*t^8.372 + 2*t^8.511 - 3*t^8.651 - 2*t^8.721 + t^8.79 + 3*t^8.791 + 2*t^8.86 - t^4.326/y - t^6.628/y - t^6.698/y - t^6.977/y - t^7.256/y + t^7.396/y + (2*t^7.674)/y + (3*t^7.953)/y + (3*t^8.023)/y + t^8.232/y + (3*t^8.302)/y + t^8.372/y + (2*t^8.581)/y + (2*t^8.651)/y - t^4.326*y - t^6.628*y - t^6.698*y - t^6.977*y - t^7.256*y + t^7.396*y + 2*t^7.674*y + 3*t^7.953*y + 3*t^8.023*y + t^8.232*y + 3*t^8.302*y + t^8.372*y + 2*t^8.581*y + 2*t^8.651*y | g1^8*t^2.302 + t^2.372/g1^10 + 2*g1^4*t^2.651 + g1^18*t^2.93 + t^3. + g1^24*t^3.907 + g1^6*t^3.977 + (2*t^4.047)/g1^12 + g1^2*t^4.326 + t^4.396/g1^16 + g1^16*t^4.604 + t^4.674/g1^2 + (2*t^4.744)/g1^20 + 2*g1^12*t^4.953 + (2*t^5.023)/g1^6 + g1^26*t^5.232 + 5*g1^8*t^5.302 + t^5.372/g1^10 + g1^22*t^5.581 + g1^4*t^5.651 + g1^36*t^5.86 - 2*t^6. - t^6.07/g1^18 + g1^32*t^6.209 + g1^14*t^6.279 + t^6.349/g1^4 + t^6.419/g1^22 + 2*g1^28*t^6.558 + 2*g1^10*t^6.628 + (4*t^6.698)/g1^8 + t^6.768/g1^26 + g1^42*t^6.837 + 2*g1^24*t^6.907 + 3*g1^6*t^6.977 + (4*t^7.047)/g1^12 + (2*t^7.117)/g1^30 + g1^20*t^7.256 + g1^2*t^7.326 + (2*t^7.396)/g1^16 + g1^34*t^7.535 + 4*g1^16*t^7.604 + (3*t^7.674)/g1^2 + g1^48*t^7.813 + 2*g1^30*t^7.883 + 7*g1^12*t^7.953 + t^8.023/g1^6 + t^8.093/g1^24 + g1^44*t^8.162 + 3*g1^26*t^8.232 - g1^8*t^8.302 - (3*t^8.372)/g1^10 + 2*g1^40*t^8.511 - 3*g1^4*t^8.651 - (2*t^8.721)/g1^14 + g1^54*t^8.79 + (3*t^8.791)/g1^32 + 2*g1^36*t^8.86 - (g1^2*t^4.326)/y - (g1^10*t^6.628)/y - t^6.698/(g1^8*y) - (g1^6*t^6.977)/y - (g1^20*t^7.256)/y + t^7.396/(g1^16*y) + (2*t^7.674)/(g1^2*y) + (3*g1^12*t^7.953)/y + (3*t^8.023)/(g1^6*y) + (g1^26*t^8.232)/y + (3*g1^8*t^8.302)/y + t^8.372/(g1^10*y) + (2*g1^22*t^8.581)/y + (2*g1^4*t^8.651)/y - g1^2*t^4.326*y - g1^10*t^6.628*y - (t^6.698*y)/g1^8 - g1^6*t^6.977*y - g1^20*t^7.256*y + (t^7.396*y)/g1^16 + (2*t^7.674*y)/g1^2 + 3*g1^12*t^7.953*y + (3*t^8.023*y)/g1^6 + g1^26*t^8.232*y + 3*g1^8*t^8.302*y + (t^8.372*y)/g1^10 + 2*g1^22*t^8.581*y + 2*g1^4*t^8.651*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47083 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{2}^{2}$ | 0.6958 | 0.8638 | 0.8055 | [M:[0.7814, 0.9672, 0.9672, 0.7814, 1.1257, 0.8743], q:[0.4372, 0.7814], qb:[0.5957, 0.4372], phi:[0.4372]] | 2*t^2.344 + 2*t^2.623 + 2*t^2.902 + 3*t^3.934 + t^4.131 + 2*t^4.41 + 3*t^4.689 + t^4.885 + 4*t^4.967 + 7*t^5.246 + 2*t^5.524 + 3*t^5.803 - 5*t^6. - t^4.311/y - t^4.311*y | detail |