Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46615 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_5M_6$ 0.7171 0.8807 0.8142 [X:[], M:[0.9214, 0.9214, 0.9214, 0.9214, 1.0786, 0.9214], q:[0.4607, 0.6179], qb:[0.6179, 0.4607], phi:[0.4607]] [X:[], M:[[-4, 2, 1], [2, -4, 1], [0, -6, -1], [-6, 0, -1], [2, 2, 0], [-2, -2, 0]], q:[[-2, -2, -1], [6, 0, 0]], qb:[[0, 6, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ \phi_1^2$, $ M_4$, $ M_3$, $ M_2$, $ M_1$, $ q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ M_6^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4^2$, $ M_3^2$, $ M_3M_4$, $ M_3M_6$, $ M_3\phi_1^2$, $ M_4M_6$, $ M_4\phi_1^2$, $ M_1M_6$, $ M_1\phi_1^2$, $ M_2M_6$, $ M_2\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$ . -8 6*t^2.76 + t^3.71 + 3*t^4.15 + 4*t^4.62 + 3*t^5.09 + 17*t^5.53 - 8*t^6. + t^6.47 + 14*t^6.91 + 10*t^7.38 + t^7.41 + 6*t^7.85 + 40*t^8.29 - 3*t^8.33 - 33*t^8.76 + 3*t^8.8 - t^4.38/y - (5*t^7.15)/y + (5*t^7.62)/y + (15*t^8.53)/y - t^4.38*y - 5*t^7.15*y + 5*t^7.62*y + 15*t^8.53*y (2*t^2.76)/(g1^2*g2^2) + t^2.76/(g1^6*g3) + t^2.76/(g2^6*g3) + (g1^2*g3*t^2.76)/g2^4 + (g2^2*g3*t^2.76)/g1^4 + g1^6*g2^6*t^3.71 + t^4.15/(g1^3*g2^3) + t^4.15/(g1^5*g2^5*g3^2) + (g3^2*t^4.15)/(g1*g2) + (g1^3*t^4.62)/(g2^3*g3) + (g2^3*t^4.62)/(g1^3*g3) + (g1^5*g3*t^4.62)/g2 + (g2^5*g3*t^4.62)/g1 + (g1^11*t^5.09)/g2 + g1^5*g2^5*t^5.09 + (g2^11*t^5.09)/g1 + (g1^2*t^5.53)/g2^10 + (5*t^5.53)/(g1^4*g2^4) + (g2^2*t^5.53)/g1^10 + t^5.53/(g1^12*g3^2) + t^5.53/(g2^12*g3^2) + t^5.53/(g1^6*g2^6*g3^2) + t^5.53/(g1^2*g2^8*g3) + t^5.53/(g1^8*g2^2*g3) + (g3*t^5.53)/g1^6 + (g3*t^5.53)/g2^6 + (g1^4*g3^2*t^5.53)/g2^8 + (g3^2*t^5.53)/(g1^2*g2^2) + (g2^4*g3^2*t^5.53)/g1^8 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - t^6./(g1^2*g2^2*g3^2) - g1^2*g2^2*g3^2*t^6. + g1^4*g2^4*t^6.47 + (2*t^6.91)/(g1^5*g2^5) + t^6.91/(g1^5*g2^11*g3^3) + t^6.91/(g1^11*g2^5*g3^3) + (2*t^6.91)/(g1^7*g2^7*g3^2) + t^6.91/(g1^3*g2^9*g3) + t^6.91/(g1^9*g2^3*g3) + (g3*t^6.91)/(g1*g2^7) + (g3*t^6.91)/(g1^7*g2) + (2*g3^2*t^6.91)/(g1^3*g2^3) + (g1*g3^3*t^6.91)/g2^5 + (g2*g3^3*t^6.91)/g1^5 + (g1^5*t^7.38)/g2^7 + (g2^5*t^7.38)/g1^7 + (g1^3*t^7.38)/(g2^9*g3^2) + (g2^3*t^7.38)/(g1^9*g3^2) + (g1*t^7.38)/(g2^5*g3) + (g2*t^7.38)/(g1^5*g3) + (g1^3*g3*t^7.38)/g2^3 + (g2^3*g3*t^7.38)/g1^3 + (g1^7*g3^2*t^7.38)/g2^5 + (g2^7*g3^2*t^7.38)/g1^5 + g1^12*g2^12*t^7.41 + (g1^9*t^7.85)/g2^3 + (g2^9*t^7.85)/g1^3 + (g1^11*t^7.85)/(g2^7*g3) + (g2^11*t^7.85)/(g1^7*g3) + (g1^13*g3*t^7.85)/g2^5 + (g2^13*g3*t^7.85)/g1^5 + t^8.29/g1^12 + t^8.29/g2^12 + (6*t^8.29)/(g1^6*g2^6) + t^8.29/(g1^10*g2^10*g3^4) + t^8.29/(g1^18*g3^3) + t^8.29/(g2^18*g3^3) + t^8.29/(g1^6*g2^12*g3^3) + t^8.29/(g1^12*g2^6*g3^3) + t^8.29/(g1^2*g2^14*g3^2) + t^8.29/(g1^8*g2^8*g3^2) + t^8.29/(g1^14*g2^2*g3^2) + (g1^2*t^8.29)/(g2^16*g3) + (3*t^8.29)/(g1^4*g2^10*g3) + (3*t^8.29)/(g1^10*g2^4*g3) + (g2^2*t^8.29)/(g1^16*g3) + (g1^4*g3*t^8.29)/g2^14 + (3*g3*t^8.29)/(g1^2*g2^8) + (3*g3*t^8.29)/(g1^8*g2^2) + (g2^4*g3*t^8.29)/g1^14 + (g1^2*g3^2*t^8.29)/g2^10 + (g3^2*t^8.29)/(g1^4*g2^4) + (g2^2*g3^2*t^8.29)/g1^10 + (g3^3*t^8.29)/g1^6 + (g1^6*g3^3*t^8.29)/g2^12 + (g3^3*t^8.29)/g2^6 + (g2^6*g3^3*t^8.29)/g1^12 + (g3^4*t^8.29)/(g1^2*g2^2) - g1^13*g2*t^8.33 - g1^7*g2^7*t^8.33 - g1*g2^13*t^8.33 - (g1^4*t^8.76)/g2^8 - (7*t^8.76)/(g1^2*g2^2) - (g2^4*t^8.76)/g1^8 - (2*t^8.76)/(g1^4*g2^4*g3^2) - (4*t^8.76)/(g1^6*g3) - (g1^6*t^8.76)/(g2^12*g3) - (4*t^8.76)/(g2^6*g3) - (g2^6*t^8.76)/(g1^12*g3) - (g1^8*g3*t^8.76)/g2^10 - (4*g1^2*g3*t^8.76)/g2^4 - (4*g2^2*g3*t^8.76)/g1^4 - (g2^8*g3*t^8.76)/g1^10 - 2*g3^2*t^8.76 + g1^17*g2^5*t^8.8 + g1^11*g2^11*t^8.8 + g1^5*g2^17*t^8.8 - t^4.38/(g1*g2*y) - t^7.15/(g1^3*g2^3*y) - t^7.15/(g1*g2^7*g3*y) - t^7.15/(g1^7*g2*g3*y) - (g1*g3*t^7.15)/(g2^5*y) - (g2*g3*t^7.15)/(g1^5*y) + (g1*g2*t^7.62)/y + (g1^3*t^7.62)/(g2^3*g3*y) + (g2^3*t^7.62)/(g1^3*g3*y) + (g1^5*g3*t^7.62)/(g2*y) + (g2^5*g3*t^7.62)/(g1*y) + (g1^2*t^8.53)/(g2^10*y) + (3*t^8.53)/(g1^4*g2^4*y) + (g2^2*t^8.53)/(g1^10*y) + t^8.53/(g1^6*g2^6*g3^2*y) + (2*t^8.53)/(g1^2*g2^8*g3*y) + (2*t^8.53)/(g1^8*g2^2*g3*y) + (2*g3*t^8.53)/(g1^6*y) + (2*g3*t^8.53)/(g2^6*y) + (g3^2*t^8.53)/(g1^2*g2^2*y) - (t^4.38*y)/(g1*g2) - (t^7.15*y)/(g1^3*g2^3) - (t^7.15*y)/(g1*g2^7*g3) - (t^7.15*y)/(g1^7*g2*g3) - (g1*g3*t^7.15*y)/g2^5 - (g2*g3*t^7.15*y)/g1^5 + g1*g2*t^7.62*y + (g1^3*t^7.62*y)/(g2^3*g3) + (g2^3*t^7.62*y)/(g1^3*g3) + (g1^5*g3*t^7.62*y)/g2 + (g2^5*g3*t^7.62*y)/g1 + (g1^2*t^8.53*y)/g2^10 + (3*t^8.53*y)/(g1^4*g2^4) + (g2^2*t^8.53*y)/g1^10 + (t^8.53*y)/(g1^6*g2^6*g3^2) + (2*t^8.53*y)/(g1^2*g2^8*g3) + (2*t^8.53*y)/(g1^8*g2^2*g3) + (2*g3*t^8.53*y)/g1^6 + (2*g3*t^8.53*y)/g2^6 + (g3^2*t^8.53*y)/(g1^2*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47125 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_5M_6$ + $ M_1M_2$ 0.7089 0.8701 0.8148 [X:[], M:[1.0, 1.0, 0.8961, 0.8961, 1.052, 0.948], q:[0.4221, 0.5779], qb:[0.5779, 0.526], phi:[0.474]] 2*t^2.69 + 2*t^2.84 + 2*t^3. + t^3.47 + t^3.95 + t^4.27 + 2*t^4.42 + t^4.58 + 2*t^4.73 + 3*t^4.89 + 3*t^5.38 + 2*t^5.53 + 6*t^5.69 + 2*t^5.84 - 3*t^6. - t^4.42/y - t^4.42*y detail
47091 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_5M_6$ + $ M_1M_4$ 0.71 0.8716 0.8146 [X:[], M:[1.0, 0.8862, 0.8862, 1.0, 1.0569, 0.9431], q:[0.4716, 0.5284], qb:[0.6422, 0.4716], phi:[0.4716]] 2*t^2.66 + 2*t^2.83 + 2*t^3. + t^3.51 + 3*t^4.24 + 2*t^4.41 + t^4.59 + 2*t^4.76 + t^4.93 + t^5.27 + 3*t^5.32 + 2*t^5.49 + 6*t^5.66 + 2*t^5.83 - 3*t^6. - t^4.41/y - t^4.41*y detail
46804 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_5M_6$ + $ M_2M_6$ 0.7055 0.8657 0.8149 [X:[], M:[0.951, 1.0421, 0.9647, 0.8736, 1.0421, 0.9579], q:[0.4402, 0.6088], qb:[0.5177, 0.5177], phi:[0.4789]] t^2.62 + t^2.85 + 2*t^2.87 + t^2.89 + t^3.13 + t^3.38 + t^4.08 + 2*t^4.31 + 3*t^4.54 + t^4.58 + 2*t^4.82 + t^5.09 + t^5.24 + t^5.47 + t^5.49 + t^5.51 + t^5.71 + 5*t^5.75 + t^5.79 + t^5.98 - 3*t^6. - t^4.44/y - t^4.44*y detail
48239 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_5M_6$ + $ \phi_1q_2\tilde{q}_1$ 0.663 0.838 0.7912 [X:[], M:[0.8, 0.8, 0.8, 0.8, 1.2, 0.8], q:[0.4, 0.8], qb:[0.8, 0.4], phi:[0.4]] 6*t^2.4 + 3*t^3.6 + 22*t^4.8 + 9*t^6. - t^4.2/y - t^4.2*y detail {a: 663/1000, c: 419/500, M1: 4/5, M2: 4/5, M3: 4/5, M4: 4/5, M5: 6/5, M6: 4/5, q1: 2/5, q2: 4/5, qb1: 4/5, qb2: 2/5, phi1: 2/5}
47083 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_5M_6$ + $ \phi_1q_2^2$ 0.6958 0.8638 0.8055 [X:[], M:[0.7814, 0.9672, 0.9672, 0.7814, 1.1257, 0.8743], q:[0.4372, 0.7814], qb:[0.5957, 0.4372], phi:[0.4372]] 2*t^2.34 + 2*t^2.62 + 2*t^2.9 + 3*t^3.93 + t^4.13 + 2*t^4.41 + 3*t^4.69 + t^4.89 + 4*t^4.97 + 7*t^5.25 + 2*t^5.52 + 3*t^5.8 - 5*t^6. - t^4.31/y - t^4.31*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46325 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5\phi_1^2$ 0.7103 0.8687 0.8177 [X:[], M:[0.9326, 0.9326, 0.9326, 0.9326, 1.0674], q:[0.4663, 0.6011], qb:[0.6011, 0.4663], phi:[0.4663]] 5*t^2.8 + t^3.2 + t^3.61 + 3*t^4.2 + 4*t^4.6 + 3*t^5.01 + 11*t^5.6 - 3*t^6. - t^4.4/y - t^4.4*y detail