Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47039 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6\phi_1^2$ | 0.6243 | 0.8105 | 0.7702 | [X:[], M:[1.0, 0.9794, 0.7382, 0.7464, 1.0206, 1.0103], q:[0.7526, 0.2474], qb:[0.5092, 0.5114], phi:[0.4948]] | [X:[], M:[[0, 0], [-8, -8], [-9, -1], [3, -5], [8, 8], [4, 4]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_4$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_1$, $ M_6$, $ M_5$, $ \phi_1q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_3\phi_1q_2^2$, $ M_1M_4$, $ \phi_1q_2^3\tilde{q}_1$, $ M_3M_6$, $ \phi_1q_2^3\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_5$, $ M_6q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ \phi_1^2q_2^4$, $ M_3\phi_1q_2\tilde{q}_1$ | $M_6\phi_1q_2^2$ | -2 | t^2.21 + t^2.24 + t^2.27 + t^2.28 + t^2.97 + t^3. + t^3.03 + t^3.06 + t^3.75 + t^3.79 + t^4.43 + t^4.45 + 2*t^4.48 + t^4.49 + t^4.51 + t^4.52 + 2*t^4.54 + 4*t^4.55 + t^5.18 + 2*t^5.24 + 2*t^5.25 + 2*t^5.27 + 2*t^5.28 + 2*t^5.3 + t^5.31 + t^5.33 + t^5.34 + t^5.94 + t^5.97 - 2*t^6. + t^6.02 + 3*t^6.03 + 2*t^6.06 + t^6.07 + t^6.09 + t^6.12 + t^6.64 + t^6.67 + t^6.71 + 2*t^6.72 + 3*t^6.75 + t^6.76 + 2*t^6.77 + 2*t^6.78 + 2*t^6.79 + 2*t^6.81 + 6*t^6.82 + 2*t^6.83 + t^6.85 + t^7.4 + t^7.45 + 2*t^7.46 - t^7.48 + 4*t^7.51 + 4*t^7.52 + 3*t^7.54 + 5*t^7.55 + 2*t^7.57 + 4*t^7.58 + 2*t^7.6 + 4*t^7.61 + t^8.15 - 2*t^8.21 - 2*t^8.24 + t^8.25 - 2*t^8.27 - 3*t^8.28 + 2*t^8.29 + 3*t^8.3 + 3*t^8.31 + 3*t^8.33 + 5*t^8.34 + 2*t^8.36 + t^8.37 + t^8.39 + t^8.4 + t^8.86 + t^8.88 + t^8.91 + t^8.92 + t^8.93 + 2*t^8.94 - 3*t^8.97 + 2*t^8.98 + 3*t^8.99 - t^4.48/y - t^6.7/y - t^6.72/y + t^7.45/y + t^7.48/y + t^7.49/y + t^7.51/y + t^7.52/y + t^7.55/y + t^8.18/y + (2*t^8.21)/y + (2*t^8.24)/y + (3*t^8.25)/y + (3*t^8.27)/y + (2*t^8.28)/y + (2*t^8.3)/y + t^8.31/y + t^8.33/y + t^8.34/y - t^8.91/y - t^8.94/y - t^8.96/y + (2*t^8.97)/y + t^8.99/y - t^4.48*y - t^6.7*y - t^6.72*y + t^7.45*y + t^7.48*y + t^7.49*y + t^7.51*y + t^7.52*y + t^7.55*y + t^8.18*y + 2*t^8.21*y + 2*t^8.24*y + 3*t^8.25*y + 3*t^8.27*y + 2*t^8.28*y + 2*t^8.3*y + t^8.31*y + t^8.33*y + t^8.34*y - t^8.91*y - t^8.94*y - t^8.96*y + 2*t^8.97*y + t^8.99*y | t^2.21/(g1^9*g2) + (g1^3*t^2.24)/g2^5 + (g1^7*t^2.27)/g2 + (g2^7*t^2.28)/g1 + t^2.97/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.03 + g1^8*g2^8*t^3.06 + (g1^5*t^3.75)/g2^3 + g1*g2^9*t^3.79 + t^4.43/(g1^18*g2^2) + t^4.45/(g1^6*g2^6) + (g1^6*t^4.48)/g2^10 + t^4.48/(g1^2*g2^2) + (g2^6*t^4.49)/g1^10 + (g1^10*t^4.51)/g2^6 + g1^2*g2^2*t^4.52 + (2*g1^14*t^4.54)/g2^2 + 2*g1^6*g2^6*t^4.55 + (2*g2^14*t^4.55)/g1^2 + t^5.18/(g1^13*g2^5) + (2*g1^3*t^5.24)/g2^5 + (2*g2^3*t^5.25)/g1^5 + (2*g1^7*t^5.27)/g2 + (2*g2^7*t^5.28)/g1 + 2*g1^11*g2^3*t^5.3 + g1^3*g2^11*t^5.31 + g1^15*g2^7*t^5.33 + g1^7*g2^15*t^5.34 + t^5.94/(g1^8*g2^8) + t^5.97/(g1^4*g2^4) - 2*t^6. + (g1^12*t^6.02)/g2^4 + 3*g1^4*g2^4*t^6.03 + 2*g1^8*g2^8*t^6.06 + g2^16*t^6.07 + g1^12*g2^12*t^6.09 + g1^16*g2^16*t^6.12 + t^6.64/(g1^27*g2^3) + t^6.67/(g1^15*g2^7) + (g2^5*t^6.71)/g1^19 + (g1^9*t^6.72)/g2^15 + (g1*t^6.72)/g2^7 + (g1^13*t^6.75)/g2^11 + (2*g1^5*t^6.75)/g2^3 + (g2^5*t^6.76)/g1^3 + (2*g2^13*t^6.77)/g1^11 + (2*g1^17*t^6.78)/g2^7 + g1^9*g2*t^6.79 + g1*g2^9*t^6.79 + (2*g1^21*t^6.81)/g2^3 + 3*g1^13*g2^5*t^6.82 + 3*g1^5*g2^13*t^6.82 + (2*g2^21*t^6.83)/g1^3 + g1^9*g2^17*t^6.85 + t^7.4/(g1^22*g2^6) + t^7.45/(g1^6*g2^6) + (2*g2^2*t^7.46)/g1^14 - t^7.48/(g1^2*g2^2) + (4*g1^10*t^7.51)/g2^6 + 2*g1^2*g2^2*t^7.52 + (2*g2^10*t^7.52)/g1^6 + (3*g1^14*t^7.54)/g2^2 + 3*g1^6*g2^6*t^7.55 + (2*g2^14*t^7.55)/g1^2 + 2*g1^18*g2^2*t^7.57 + 2*g1^10*g2^10*t^7.58 + 2*g1^2*g2^18*t^7.58 + 2*g1^22*g2^6*t^7.6 + 2*g1^14*g2^14*t^7.61 + 2*g1^6*g2^22*t^7.61 + t^8.15/(g1^17*g2^9) - (2*t^8.21)/(g1^9*g2) - (2*g1^3*t^8.24)/g2^5 + (g2^3*t^8.25)/g1^5 - (2*g1^7*t^8.27)/g2 - (3*g2^7*t^8.28)/g1 + (2*g1^19*t^8.29)/g2^5 + 3*g1^11*g2^3*t^8.3 + 3*g1^3*g2^11*t^8.31 + 3*g1^15*g2^7*t^8.33 + 3*g1^7*g2^15*t^8.34 + (2*g2^23*t^8.34)/g1 + 2*g1^19*g2^11*t^8.36 + g1^11*g2^19*t^8.37 + g1^23*g2^15*t^8.39 + g1^15*g2^23*t^8.4 + t^8.86/(g1^36*g2^4) + t^8.88/(g1^24*g2^8) + t^8.91/(g1^12*g2^12) + (g2^4*t^8.92)/g1^28 + t^8.93/g2^16 + t^8.94/g1^16 + t^8.94/(g1^8*g2^8) + (g1^12*t^8.96)/g2^20 - (g1^4*t^8.96)/g2^12 - (3*t^8.97)/(g1^4*g2^4) + (2*g2^12*t^8.98)/g1^20 + (g1^16*t^8.99)/g2^16 + (2*g1^8*t^8.99)/g2^8 - t^4.48/(g1^2*g2^2*y) - t^6.7/(g1^11*g2^3*y) - (g1*t^6.72)/(g2^7*y) + t^7.45/(g1^6*g2^6*y) + t^7.48/(g1^2*g2^2*y) + (g2^6*t^7.49)/(g1^10*y) + (g1^10*t^7.51)/(g2^6*y) + (g1^2*g2^2*t^7.52)/y + (g1^6*g2^6*t^7.55)/y + t^8.18/(g1^13*g2^5*y) + t^8.21/(g1*g2^9*y) + t^8.21/(g1^9*g2*y) + (2*g1^3*t^8.24)/(g2^5*y) + (3*g2^3*t^8.25)/(g1^5*y) + (3*g1^7*t^8.27)/(g2*y) + (2*g2^7*t^8.28)/(g1*y) + (2*g1^11*g2^3*t^8.3)/y + (g1^3*g2^11*t^8.31)/y + (g1^15*g2^7*t^8.33)/y + (g1^7*g2^15*t^8.34)/y - t^8.91/(g1^20*g2^4*y) - t^8.94/(g1^8*g2^8*y) - (g1^4*t^8.96)/(g2^12*y) + (2*t^8.97)/(g1^4*g2^4*y) + (g1^8*t^8.99)/(g2^8*y) - (t^4.48*y)/(g1^2*g2^2) - (t^6.7*y)/(g1^11*g2^3) - (g1*t^6.72*y)/g2^7 + (t^7.45*y)/(g1^6*g2^6) + (t^7.48*y)/(g1^2*g2^2) + (g2^6*t^7.49*y)/g1^10 + (g1^10*t^7.51*y)/g2^6 + g1^2*g2^2*t^7.52*y + g1^6*g2^6*t^7.55*y + (t^8.18*y)/(g1^13*g2^5) + (t^8.21*y)/(g1*g2^9) + (t^8.21*y)/(g1^9*g2) + (2*g1^3*t^8.24*y)/g2^5 + (3*g2^3*t^8.25*y)/g1^5 + (3*g1^7*t^8.27*y)/g2 + (2*g2^7*t^8.28*y)/g1 + 2*g1^11*g2^3*t^8.3*y + g1^3*g2^11*t^8.31*y + g1^15*g2^7*t^8.33*y + g1^7*g2^15*t^8.34*y - (t^8.91*y)/(g1^20*g2^4) - (t^8.94*y)/(g1^8*g2^8) - (g1^4*t^8.96*y)/g2^12 + (2*t^8.97*y)/(g1^4*g2^4) + (g1^8*t^8.99*y)/g2^8 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46540 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ | 0.6262 | 0.8118 | 0.7713 | [X:[], M:[1.0, 0.9403, 0.716, 0.7392, 1.0597], q:[0.7575, 0.2425], qb:[0.5265, 0.5332], phi:[0.4851]] | t^2.15 + t^2.22 + t^2.31 + t^2.33 + 2*t^2.91 + t^3. + t^3.18 + t^3.76 + t^3.87 + t^4.3 + t^4.37 + t^4.44 + t^4.46 + t^4.48 + t^4.52 + t^4.54 + 2*t^4.61 + 2*t^4.63 + 2*t^4.65 + 2*t^5.06 + t^5.13 + 3*t^5.22 + 2*t^5.24 + t^5.31 + 2*t^5.33 + t^5.4 + t^5.49 + t^5.51 + 3*t^5.82 + 2*t^5.91 - 3*t^6. - t^4.46/y - t^4.46*y | detail |