Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2778 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ | 0.6243 | 0.8105 | 0.7702 | [M:[1.0, 1.0103, 0.9794, 0.7464, 0.7382, 1.0206], q:[0.7526, 0.2474], qb:[0.5114, 0.5092], phi:[0.4948]] | [M:[[0, 0], [4, 4], [-8, -8], [-5, 3], [-1, -9], [8, 8]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ | ${}$ | -2 | t^2.215 + t^2.239 + t^2.27 + t^2.276 + t^2.969 + t^3. + t^3.031 + t^3.062 + t^3.755 + t^3.792 + t^4.429 + t^4.454 + t^4.478 + t^4.485 + t^4.491 + t^4.509 + t^4.515 + 2*t^4.54 + 2*t^4.546 + 2*t^4.553 + t^5.184 + 2*t^5.239 + 2*t^5.245 + 2*t^5.27 + 2*t^5.276 + 2*t^5.301 + t^5.307 + t^5.332 + t^5.338 + t^5.938 + t^5.969 - 2*t^6. + t^6.024 + 3*t^6.031 + 2*t^6.062 + t^6.068 + t^6.093 + t^6.124 + t^6.644 + t^6.668 + t^6.706 + t^6.717 + t^6.724 + t^6.748 + 2*t^6.755 + t^6.761 + 2*t^6.767 + 2*t^6.779 + t^6.785 + t^6.792 + 2*t^6.81 + 3*t^6.816 + 3*t^6.823 + 2*t^6.829 + t^6.854 + t^7.398 + t^7.454 + 2*t^7.46 - t^7.485 + 4*t^7.509 + 2*t^7.515 + 2*t^7.522 + 3*t^7.54 + 3*t^7.546 + 2*t^7.553 + 2*t^7.571 + 2*t^7.577 + 2*t^7.584 + 2*t^7.602 + 2*t^7.608 + 2*t^7.615 + t^8.153 - 2*t^8.215 - 2*t^8.239 + t^8.245 - 2*t^8.27 - 3*t^8.276 + 2*t^8.294 + 3*t^8.301 + 3*t^8.307 + 3*t^8.332 + 3*t^8.338 + 2*t^8.345 + 2*t^8.363 + t^8.369 + t^8.394 + t^8.4 + t^8.858 + t^8.883 + t^8.907 + t^8.92 + t^8.932 + t^8.938 + t^8.945 + t^8.956 - t^8.963 - 3*t^8.969 + 2*t^8.982 + t^8.987 + 2*t^8.994 - t^4.485/y - t^6.699/y - t^6.724/y + t^7.454/y + t^7.485/y + t^7.491/y + t^7.509/y + t^7.515/y + t^7.546/y + t^8.184/y + t^8.208/y + t^8.215/y + (2*t^8.239)/y + (3*t^8.245)/y + (3*t^8.27)/y + (2*t^8.276)/y + (2*t^8.301)/y + t^8.307/y + t^8.332/y + t^8.338/y - t^8.914/y - t^8.938/y - t^8.963/y + (2*t^8.969)/y + t^8.994/y - t^4.485*y - t^6.699*y - t^6.724*y + t^7.454*y + t^7.485*y + t^7.491*y + t^7.509*y + t^7.515*y + t^7.546*y + t^8.184*y + t^8.208*y + t^8.215*y + 2*t^8.239*y + 3*t^8.245*y + 3*t^8.27*y + 2*t^8.276*y + 2*t^8.301*y + t^8.307*y + t^8.332*y + t^8.338*y - t^8.914*y - t^8.938*y - t^8.963*y + 2*t^8.969*y + t^8.994*y | t^2.215/(g1*g2^9) + (g2^3*t^2.239)/g1^5 + (g2^7*t^2.27)/g1 + (g1^7*t^2.276)/g2 + t^2.969/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.031 + g1^8*g2^8*t^3.062 + (g2^5*t^3.755)/g1^3 + g1^9*g2*t^3.792 + t^4.429/(g1^2*g2^18) + t^4.454/(g1^6*g2^6) + (g2^6*t^4.478)/g1^10 + t^4.485/(g1^2*g2^2) + (g1^6*t^4.491)/g2^10 + (g2^10*t^4.509)/g1^6 + g1^2*g2^2*t^4.515 + (2*g2^14*t^4.54)/g1^2 + 2*g1^6*g2^6*t^4.546 + (2*g1^14*t^4.553)/g2^2 + t^5.184/(g1^5*g2^13) + (2*g2^3*t^5.239)/g1^5 + (2*g1^3*t^5.245)/g2^5 + (2*g2^7*t^5.27)/g1 + (2*g1^7*t^5.276)/g2 + 2*g1^3*g2^11*t^5.301 + g1^11*g2^3*t^5.307 + g1^7*g2^15*t^5.332 + g1^15*g2^7*t^5.338 + t^5.938/(g1^8*g2^8) + t^5.969/(g1^4*g2^4) - 2*t^6. + (g2^12*t^6.024)/g1^4 + 3*g1^4*g2^4*t^6.031 + 2*g1^8*g2^8*t^6.062 + g1^16*t^6.068 + g1^12*g2^12*t^6.093 + g1^16*g2^16*t^6.124 + t^6.644/(g1^3*g2^27) + t^6.668/(g1^7*g2^15) + (g1^5*t^6.706)/g2^19 + (g2^9*t^6.717)/g1^15 + (g2*t^6.724)/g1^7 + (g2^13*t^6.748)/g1^11 + (2*g2^5*t^6.755)/g1^3 + (g1^5*t^6.761)/g2^3 + (2*g1^13*t^6.767)/g2^11 + (2*g2^17*t^6.779)/g1^7 + g1*g2^9*t^6.785 + g1^9*g2*t^6.792 + (2*g2^21*t^6.81)/g1^3 + 3*g1^5*g2^13*t^6.816 + 3*g1^13*g2^5*t^6.823 + (2*g1^21*t^6.829)/g2^3 + g1^17*g2^9*t^6.854 + t^7.398/(g1^6*g2^22) + t^7.454/(g1^6*g2^6) + (2*g1^2*t^7.46)/g2^14 - t^7.485/(g1^2*g2^2) + (4*g2^10*t^7.509)/g1^6 + 2*g1^2*g2^2*t^7.515 + (2*g1^10*t^7.522)/g2^6 + (3*g2^14*t^7.54)/g1^2 + 3*g1^6*g2^6*t^7.546 + (2*g1^14*t^7.553)/g2^2 + 2*g1^2*g2^18*t^7.571 + 2*g1^10*g2^10*t^7.577 + 2*g1^18*g2^2*t^7.584 + 2*g1^6*g2^22*t^7.602 + 2*g1^14*g2^14*t^7.608 + 2*g1^22*g2^6*t^7.615 + t^8.153/(g1^9*g2^17) - (2*t^8.215)/(g1*g2^9) - (2*g2^3*t^8.239)/g1^5 + (g1^3*t^8.245)/g2^5 - (2*g2^7*t^8.27)/g1 - (3*g1^7*t^8.276)/g2 + (2*g2^19*t^8.294)/g1^5 + 3*g1^3*g2^11*t^8.301 + 3*g1^11*g2^3*t^8.307 + 3*g1^7*g2^15*t^8.332 + 3*g1^15*g2^7*t^8.338 + (2*g1^23*t^8.345)/g2 + 2*g1^11*g2^19*t^8.363 + g1^19*g2^11*t^8.369 + g1^15*g2^23*t^8.394 + g1^23*g2^15*t^8.4 + t^8.858/(g1^4*g2^36) + t^8.883/(g1^8*g2^24) + t^8.907/(g1^12*g2^12) + (g1^4*t^8.92)/g2^28 + t^8.932/g1^16 + t^8.938/(g1^8*g2^8) + t^8.945/g2^16 + (g2^12*t^8.956)/g1^20 - (g2^4*t^8.963)/g1^12 - (3*t^8.969)/(g1^4*g2^4) + (2*g1^12*t^8.982)/g2^20 + (g2^16*t^8.987)/g1^16 + (2*g2^8*t^8.994)/g1^8 - t^4.485/(g1^2*g2^2*y) - t^6.699/(g1^3*g2^11*y) - (g2*t^6.724)/(g1^7*y) + t^7.454/(g1^6*g2^6*y) + t^7.485/(g1^2*g2^2*y) + (g1^6*t^7.491)/(g2^10*y) + (g2^10*t^7.509)/(g1^6*y) + (g1^2*g2^2*t^7.515)/y + (g1^6*g2^6*t^7.546)/y + t^8.184/(g1^5*g2^13*y) + t^8.208/(g1^9*g2*y) + t^8.215/(g1*g2^9*y) + (2*g2^3*t^8.239)/(g1^5*y) + (3*g1^3*t^8.245)/(g2^5*y) + (3*g2^7*t^8.27)/(g1*y) + (2*g1^7*t^8.276)/(g2*y) + (2*g1^3*g2^11*t^8.301)/y + (g1^11*g2^3*t^8.307)/y + (g1^7*g2^15*t^8.332)/y + (g1^15*g2^7*t^8.338)/y - t^8.914/(g1^4*g2^20*y) - t^8.938/(g1^8*g2^8*y) - (g2^4*t^8.963)/(g1^12*y) + (2*t^8.969)/(g1^4*g2^4*y) + (g2^8*t^8.994)/(g1^8*y) - (t^4.485*y)/(g1^2*g2^2) - (t^6.699*y)/(g1^3*g2^11) - (g2*t^6.724*y)/g1^7 + (t^7.454*y)/(g1^6*g2^6) + (t^7.485*y)/(g1^2*g2^2) + (g1^6*t^7.491*y)/g2^10 + (g2^10*t^7.509*y)/g1^6 + g1^2*g2^2*t^7.515*y + g1^6*g2^6*t^7.546*y + (t^8.184*y)/(g1^5*g2^13) + (t^8.208*y)/(g1^9*g2) + (t^8.215*y)/(g1*g2^9) + (2*g2^3*t^8.239*y)/g1^5 + (3*g1^3*t^8.245*y)/g2^5 + (3*g2^7*t^8.27*y)/g1 + (2*g1^7*t^8.276*y)/g2 + 2*g1^3*g2^11*t^8.301*y + g1^11*g2^3*t^8.307*y + g1^7*g2^15*t^8.332*y + g1^15*g2^7*t^8.338*y - (t^8.914*y)/(g1^4*g2^20) - (t^8.938*y)/(g1^8*g2^8) - (g2^4*t^8.963*y)/g1^12 + (2*t^8.969*y)/(g1^4*g2^4) + (g2^8*t^8.994*y)/g1^8 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
3292 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ | 0.6442 | 0.847 | 0.7605 | [M:[1.0, 1.0181, 0.9639, 0.737, 0.7359, 1.0361, 0.719], q:[0.7545, 0.2455], qb:[0.5265, 0.5096], phi:[0.491]] | t^2.157 + t^2.208 + t^2.211 + t^2.265 + t^2.316 + t^2.946 + t^3. + t^3.054 + t^3.108 + t^3.738 + t^4.314 + t^4.365 + t^4.368 + t^4.415 + t^4.419 + 2*t^4.422 + 2*t^4.473 + t^4.476 + t^4.524 + t^4.527 + 2*t^4.53 + 2*t^4.581 + 2*t^4.632 + t^5.103 + t^5.154 + t^5.157 + 3*t^5.211 + 2*t^5.262 + 3*t^5.265 + 2*t^5.316 + 2*t^5.319 + t^5.37 + t^5.373 + t^5.424 + t^5.892 + t^5.895 + t^5.946 - 2*t^6. - t^4.473/y - t^4.473*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1776 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.6297 | 0.8172 | 0.7705 | [M:[1.0, 1.047, 0.906, 0.7326, 0.6969], q:[0.7617, 0.2383], qb:[0.5526, 0.5414], phi:[0.4765]] | t^2.091 + t^2.198 + t^2.339 + t^2.373 + t^2.718 + t^2.859 + t^3. + t^3.141 + t^3.768 + t^3.943 + t^4.181 + t^4.289 + t^4.396 + t^4.43 + t^4.463 + t^4.537 + t^4.57 + 2*t^4.678 + 2*t^4.711 + 2*t^4.745 + t^4.809 + t^4.916 + t^4.95 + t^5.057 + t^5.091 + 2*t^5.198 + 2*t^5.232 + 2*t^5.339 + t^5.373 + t^5.436 + t^5.48 + t^5.514 + t^5.577 + 2*t^5.718 + 2*t^5.859 - 2*t^6. - t^4.43/y - t^4.43*y | detail |