Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46540 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ 0.6262 0.8118 0.7713 [X:[], M:[1.0, 0.9403, 0.716, 0.7392, 1.0597], q:[0.7575, 0.2425], qb:[0.5265, 0.5332], phi:[0.4851]] [X:[], M:[[0, 0], [-8, -8], [-9, -1], [3, -5], [8, 8]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_1$, $ M_5$, $ \phi_1q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_3\phi_1q_2^2$, $ M_4\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_1M_4$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_5$, $ M_5q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ \phi_1^4$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2^4$, $ M_1\phi_1^2$, $ M_3\phi_1q_2\tilde{q}_1$ . -3 t^2.15 + t^2.22 + t^2.31 + t^2.33 + 2*t^2.91 + t^3. + t^3.18 + t^3.76 + t^3.87 + t^4.3 + t^4.37 + t^4.44 + t^4.46 + t^4.48 + t^4.52 + t^4.54 + 2*t^4.61 + 2*t^4.63 + 2*t^4.65 + 2*t^5.06 + t^5.13 + 3*t^5.22 + 2*t^5.24 + t^5.31 + 2*t^5.33 + t^5.4 + t^5.49 + t^5.51 + 3*t^5.82 + 2*t^5.91 - 3*t^6. + t^6.07 + 3*t^6.09 + t^6.18 + t^6.2 + t^6.36 + t^6.44 + t^6.51 + t^6.62 + t^6.65 + 2*t^6.67 + t^6.74 + 2*t^6.76 + 2*t^6.78 + 2*t^6.8 + 2*t^6.83 + t^6.87 + 2*t^6.92 + 3*t^6.94 + 2*t^6.96 + 2*t^6.98 + t^7.05 + 2*t^7.21 + t^7.28 + t^7.35 + 2*t^7.37 + 2*t^7.39 + t^7.44 - t^7.46 + 5*t^7.52 + 3*t^7.54 + 3*t^7.56 + 2*t^7.61 + 2*t^7.63 + 2*t^7.65 + 2*t^7.79 + 2*t^7.81 + 2*t^7.83 + 3*t^7.97 + t^8.04 + 3*t^8.13 - t^8.15 - t^8.22 + 3*t^8.24 - 3*t^8.31 - 5*t^8.33 + 2*t^8.38 + 2*t^8.4 + 2*t^8.42 + t^8.49 + 2*t^8.51 + 2*t^8.53 + t^8.58 + t^8.59 + t^8.66 + t^8.67 + t^8.69 + 4*t^8.73 + t^8.77 + t^8.8 + 3*t^8.82 + t^8.84 + t^8.87 - t^8.89 - 7*t^8.91 + 2*t^8.95 + t^8.96 + 3*t^8.98 - t^4.46/y - t^6.6/y - t^6.67/y + t^7.46/y + t^7.48/y + t^7.52/y + (2*t^7.54)/y + t^7.63/y + (2*t^8.06)/y + (2*t^8.13)/y + t^8.15/y + (3*t^8.22)/y + (3*t^8.24)/y + (2*t^8.31)/y + (2*t^8.33)/y + t^8.4/y + t^8.49/y + t^8.51/y - t^8.75/y - t^8.89/y + (3*t^8.91)/y + t^8.98/y - t^4.46*y - t^6.6*y - t^6.67*y + t^7.46*y + t^7.48*y + t^7.52*y + 2*t^7.54*y + t^7.63*y + 2*t^8.06*y + 2*t^8.13*y + t^8.15*y + 3*t^8.22*y + 3*t^8.24*y + 2*t^8.31*y + 2*t^8.33*y + t^8.4*y + t^8.49*y + t^8.51*y - t^8.75*y - t^8.89*y + 3*t^8.91*y + t^8.98*y t^2.15/(g1^9*g2) + (g1^3*t^2.22)/g2^5 + (g1^7*t^2.31)/g2 + (g2^7*t^2.33)/g1 + (2*t^2.91)/(g1^4*g2^4) + t^3. + g1^8*g2^8*t^3.18 + (g1^5*t^3.76)/g2^3 + g1*g2^9*t^3.87 + t^4.3/(g1^18*g2^2) + t^4.37/(g1^6*g2^6) + (g1^6*t^4.44)/g2^10 + t^4.46/(g1^2*g2^2) + (g2^6*t^4.48)/g1^10 + (g1^10*t^4.52)/g2^6 + g1^2*g2^2*t^4.54 + (2*g1^14*t^4.61)/g2^2 + 2*g1^6*g2^6*t^4.63 + (2*g2^14*t^4.65)/g1^2 + (2*t^5.06)/(g1^13*g2^5) + t^5.13/(g1*g2^9) + (3*g1^3*t^5.22)/g2^5 + (2*g2^3*t^5.24)/g1^5 + (g1^7*t^5.31)/g2 + (2*g2^7*t^5.33)/g1 + g1^11*g2^3*t^5.4 + g1^15*g2^7*t^5.49 + g1^7*g2^15*t^5.51 + (3*t^5.82)/(g1^8*g2^8) + (2*t^5.91)/(g1^4*g2^4) - 3*t^6. + (g1^12*t^6.07)/g2^4 + 3*g1^4*g2^4*t^6.09 + g1^8*g2^8*t^6.18 + g2^16*t^6.2 + g1^16*g2^16*t^6.36 + t^6.44/(g1^27*g2^3) + t^6.51/(g1^15*g2^7) + (g2^5*t^6.62)/g1^19 + (g1^9*t^6.65)/g2^15 + (2*g1*t^6.67)/g2^7 + (g1^13*t^6.74)/g2^11 + (2*g1^5*t^6.76)/g2^3 + (2*g2^5*t^6.78)/g1^3 + (2*g2^13*t^6.8)/g1^11 + (2*g1^17*t^6.83)/g2^7 + g1*g2^9*t^6.87 + (2*g1^21*t^6.92)/g2^3 + 3*g1^13*g2^5*t^6.94 + 2*g1^5*g2^13*t^6.96 + (2*g2^21*t^6.98)/g1^3 + g1^9*g2^17*t^7.05 + (2*t^7.21)/(g1^22*g2^6) + t^7.28/(g1^10*g2^10) + (g1^2*t^7.35)/g2^14 + (2*t^7.37)/(g1^6*g2^6) + (2*g2^2*t^7.39)/g1^14 + (g1^6*t^7.44)/g2^10 - t^7.46/(g1^2*g2^2) + (5*g1^10*t^7.52)/g2^6 + 3*g1^2*g2^2*t^7.54 + (3*g2^10*t^7.56)/g1^6 + (2*g1^14*t^7.61)/g2^2 + 2*g1^6*g2^6*t^7.63 + (2*g2^14*t^7.65)/g1^2 + 2*g1^22*g2^6*t^7.79 + 2*g1^14*g2^14*t^7.81 + 2*g1^6*g2^22*t^7.83 + (3*t^7.97)/(g1^17*g2^9) + t^8.04/(g1^5*g2^13) + (3*t^8.13)/(g1*g2^9) - t^8.15/(g1^9*g2) - (g1^3*t^8.22)/g2^5 + (3*g2^3*t^8.24)/g1^5 - (3*g1^7*t^8.31)/g2 - (5*g2^7*t^8.33)/g1 + (2*g1^19*t^8.38)/g2^5 + 2*g1^11*g2^3*t^8.4 + 2*g1^3*g2^11*t^8.42 + g1^15*g2^7*t^8.49 + 2*g1^7*g2^15*t^8.51 + (2*g2^23*t^8.53)/g1 + g1^19*g2^11*t^8.58 + t^8.59/(g1^36*g2^4) + t^8.66/(g1^24*g2^8) + g1^23*g2^15*t^8.67 + g1^15*g2^23*t^8.69 + (4*t^8.73)/(g1^12*g2^12) + (g2^4*t^8.77)/g1^28 + t^8.8/g2^16 + (3*t^8.82)/(g1^8*g2^8) + t^8.84/g1^16 + (g1^12*t^8.87)/g2^20 - (g1^4*t^8.89)/g2^12 - (7*t^8.91)/(g1^4*g2^4) + (2*g2^12*t^8.95)/g1^20 + (g1^16*t^8.96)/g2^16 + (3*g1^8*t^8.98)/g2^8 - t^4.46/(g1^2*g2^2*y) - t^6.6/(g1^11*g2^3*y) - (g1*t^6.67)/(g2^7*y) + t^7.46/(g1^2*g2^2*y) + (g2^6*t^7.48)/(g1^10*y) + (g1^10*t^7.52)/(g2^6*y) + (2*g1^2*g2^2*t^7.54)/y + (g1^6*g2^6*t^7.63)/y + (2*t^8.06)/(g1^13*g2^5*y) + (2*t^8.13)/(g1*g2^9*y) + t^8.15/(g1^9*g2*y) + (3*g1^3*t^8.22)/(g2^5*y) + (3*g2^3*t^8.24)/(g1^5*y) + (2*g1^7*t^8.31)/(g2*y) + (2*g2^7*t^8.33)/(g1*y) + (g1^11*g2^3*t^8.4)/y + (g1^15*g2^7*t^8.49)/y + (g1^7*g2^15*t^8.51)/y - t^8.75/(g1^20*g2^4*y) - (g1^4*t^8.89)/(g2^12*y) + (3*t^8.91)/(g1^4*g2^4*y) + (g1^8*t^8.98)/(g2^8*y) - (t^4.46*y)/(g1^2*g2^2) - (t^6.6*y)/(g1^11*g2^3) - (g1*t^6.67*y)/g2^7 + (t^7.46*y)/(g1^2*g2^2) + (g2^6*t^7.48*y)/g1^10 + (g1^10*t^7.52*y)/g2^6 + 2*g1^2*g2^2*t^7.54*y + g1^6*g2^6*t^7.63*y + (2*t^8.06*y)/(g1^13*g2^5) + (2*t^8.13*y)/(g1*g2^9) + (t^8.15*y)/(g1^9*g2) + (3*g1^3*t^8.22*y)/g2^5 + (3*g2^3*t^8.24*y)/g1^5 + (2*g1^7*t^8.31*y)/g2 + (2*g2^7*t^8.33*y)/g1 + g1^11*g2^3*t^8.4*y + g1^15*g2^7*t^8.49*y + g1^7*g2^15*t^8.51*y - (t^8.75*y)/(g1^20*g2^4) - (g1^4*t^8.89*y)/g2^12 + (3*t^8.91*y)/(g1^4*g2^4) + (g1^8*t^8.98*y)/g2^8


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47039 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6\phi_1^2$ 0.6243 0.8105 0.7702 [X:[], M:[1.0, 0.9794, 0.7382, 0.7464, 1.0206, 1.0103], q:[0.7526, 0.2474], qb:[0.5092, 0.5114], phi:[0.4948]] t^2.21 + t^2.24 + t^2.27 + t^2.28 + t^2.97 + t^3. + t^3.03 + t^3.06 + t^3.75 + t^3.79 + t^4.43 + t^4.45 + 2*t^4.48 + t^4.49 + t^4.51 + t^4.52 + 2*t^4.54 + 4*t^4.55 + t^5.18 + 2*t^5.24 + 2*t^5.25 + 2*t^5.27 + 2*t^5.28 + 2*t^5.3 + t^5.31 + t^5.33 + t^5.34 + t^5.94 + t^5.97 - 2*t^6. - t^4.48/y - t^4.48*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46172 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.6348 0.8263 0.7683 [X:[], M:[1.0, 0.8719, 0.6781, 0.7258], q:[0.766, 0.234], qb:[0.5559, 0.5722], phi:[0.468]] t^2.03 + t^2.18 + t^2.37 + t^2.42 + t^2.62 + 2*t^2.81 + t^3. + t^3.77 + t^4.01 + t^4.07 + t^4.21 + t^4.36 + t^4.4 + t^4.45 + t^4.55 + t^4.6 + t^4.65 + 2*t^4.74 + 3*t^4.79 + 4*t^4.84 + 2*t^4.99 + t^5.03 + 3*t^5.18 + 3*t^5.23 + t^5.37 + 3*t^5.42 + 4*t^5.62 + 2*t^5.81 - 3*t^6. - t^4.4/y - t^4.4*y detail