Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46991 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{6}$ 0.6455 0.8475 0.7617 [M:[0.7063, 0.7167, 1.0, 0.7371, 0.7475, 1.2833], q:[0.7577, 0.536], qb:[0.5256, 0.2423], phi:[0.4846]] [M:[[1, 9], [-1, 1], [0, 0], [1, 5], [-1, -3], [1, -1]], q:[[0, -1], [-1, -8]], qb:[[1, 0], [0, 1]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{2}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.119 + t^2.211 + t^2.242 + t^2.304 + t^2.335 + 2*t^2.908 + t^3. + t^3.185 + t^3.85 + t^4.238 + t^4.33 + t^4.361 + 2*t^4.423 + 2*t^4.454 + t^4.485 + t^4.515 + 2*t^4.546 + t^4.577 + 2*t^4.608 + 2*t^4.639 + 2*t^4.67 + 2*t^5.026 + 2*t^5.119 + t^5.15 + 3*t^5.211 + 3*t^5.242 + 2*t^5.304 + t^5.335 + t^5.396 + t^5.427 + t^5.489 + t^5.52 + 3*t^5.815 + t^5.908 - 3*t^6. - t^6.031 + t^6.061 + 2*t^6.092 + t^6.154 + t^6.185 + t^6.356 + t^6.37 + t^6.449 + t^6.48 + 2*t^6.541 + t^6.573 + 2*t^6.634 + 2*t^6.665 + t^6.696 + 3*t^6.726 + t^6.727 + 4*t^6.758 + 2*t^6.789 + 2*t^6.819 + t^6.82 + 3*t^6.85 + 2*t^6.881 + 2*t^6.911 + 2*t^6.912 + 2*t^6.943 + 2*t^6.974 + 2*t^7.005 + t^7.035 + 2*t^7.145 + 2*t^7.238 + t^7.269 + 4*t^7.33 + 3*t^7.361 + t^7.392 + 3*t^7.423 + 2*t^7.454 + t^7.485 + 5*t^7.515 + 4*t^7.546 + 4*t^7.577 + 3*t^7.608 + 2*t^7.639 + 2*t^7.67 + t^7.7 + t^7.731 + 2*t^7.793 + 2*t^7.824 + 2*t^7.855 + 3*t^7.934 + 2*t^8.026 + t^8.057 + 2*t^8.15 - t^8.211 - 3*t^8.242 + t^8.273 - t^8.274 - 3*t^8.304 - 4*t^8.335 + t^8.365 - t^8.366 + t^8.396 + 2*t^8.458 + t^8.475 + 2*t^8.489 + t^8.52 + t^8.568 + t^8.581 + t^8.599 + t^8.612 + 2*t^8.66 + t^8.674 + t^8.691 + t^8.705 + 4*t^8.723 + 2*t^8.753 + 2*t^8.784 + t^8.815 + 4*t^8.845 + t^8.846 + 2*t^8.876 - 6*t^8.908 + 3*t^8.938 - t^8.939 + 3*t^8.969 + t^8.97 - t^4.454/y - t^6.573/y - t^6.665/y - t^6.696/y + t^7.33/y + t^7.423/y + (2*t^7.454)/y + t^7.515/y + (3*t^7.546)/y + t^7.577/y + t^7.639/y + (2*t^8.026)/y + (3*t^8.119)/y + (2*t^8.15)/y + (4*t^8.211)/y + (4*t^8.242)/y + (2*t^8.304)/y + (2*t^8.335)/y + t^8.396/y + t^8.427/y + t^8.489/y + t^8.52/y - t^8.691/y - t^8.784/y - t^8.876/y + t^8.908/y - t^8.939/y + t^8.969/y - t^4.454*y - t^6.573*y - t^6.665*y - t^6.696*y + t^7.33*y + t^7.423*y + 2*t^7.454*y + t^7.515*y + 3*t^7.546*y + t^7.577*y + t^7.639*y + 2*t^8.026*y + 3*t^8.119*y + 2*t^8.15*y + 4*t^8.211*y + 4*t^8.242*y + 2*t^8.304*y + 2*t^8.335*y + t^8.396*y + t^8.427*y + t^8.489*y + t^8.52*y - t^8.691*y - t^8.784*y - t^8.876*y + t^8.908*y - t^8.939*y + t^8.969*y g1*g2^9*t^2.119 + g1*g2^5*t^2.211 + t^2.242/(g1*g2^3) + g1*g2*t^2.304 + t^2.335/(g1*g2^7) + 2*g2^4*t^2.908 + t^3. + t^3.185/g2^8 + (g1*t^3.85)/g2 + g1^2*g2^18*t^4.238 + g1^2*g2^14*t^4.33 + g2^6*t^4.361 + 2*g1^2*g2^10*t^4.423 + 2*g2^2*t^4.454 + t^4.485/(g1^2*g2^6) + g1^2*g2^6*t^4.515 + (2*t^4.546)/g2^2 + t^4.577/(g1^2*g2^10) + 2*g1^2*g2^2*t^4.608 + (2*t^4.639)/g2^6 + (2*t^4.67)/(g1^2*g2^14) + 2*g1*g2^13*t^5.026 + 2*g1*g2^9*t^5.119 + (g2*t^5.15)/g1 + 3*g1*g2^5*t^5.211 + (3*t^5.242)/(g1*g2^3) + 2*g1*g2*t^5.304 + t^5.335/(g1*g2^7) + (g1*t^5.396)/g2^3 + t^5.427/(g1*g2^11) + (g1*t^5.489)/g2^7 + t^5.52/(g1*g2^15) + 3*g2^8*t^5.815 + g2^4*t^5.908 - 3*t^6. - t^6.031/(g1^2*g2^8) + g1^2*g2^4*t^6.061 + (2*t^6.092)/g2^4 + g1^2*t^6.154 + t^6.185/g2^8 + g1^3*g2^27*t^6.356 + t^6.37/g2^16 + g1^3*g2^23*t^6.449 + g1*g2^15*t^6.48 + 2*g1^3*g2^19*t^6.541 + g1*g2^11*t^6.573 + 2*g1^3*g2^15*t^6.634 + 2*g1*g2^7*t^6.665 + t^6.696/(g1*g2) + 3*g1^3*g2^11*t^6.726 + t^6.727/(g1^3*g2^9) + 4*g1*g2^3*t^6.758 + (2*t^6.789)/(g1*g2^5) + 2*g1^3*g2^7*t^6.819 + t^6.82/(g1^3*g2^13) + (3*g1*t^6.85)/g2 + (2*t^6.881)/(g1*g2^9) + 2*g1^3*g2^3*t^6.911 + (2*t^6.912)/(g1^3*g2^17) + (2*g1*t^6.943)/g2^5 + (2*t^6.974)/(g1*g2^13) + (2*t^7.005)/(g1^3*g2^21) + (g1*t^7.035)/g2^9 + 2*g1^2*g2^22*t^7.145 + 2*g1^2*g2^18*t^7.238 + g2^10*t^7.269 + 4*g1^2*g2^14*t^7.33 + 3*g2^6*t^7.361 + t^7.392/(g1^2*g2^2) + 3*g1^2*g2^10*t^7.423 + 2*g2^2*t^7.454 + t^7.485/(g1^2*g2^6) + 5*g1^2*g2^6*t^7.515 + (4*t^7.546)/g2^2 + (4*t^7.577)/(g1^2*g2^10) + 3*g1^2*g2^2*t^7.608 + (2*t^7.639)/g2^6 + (2*t^7.67)/(g1^2*g2^14) + (g1^2*t^7.7)/g2^2 + t^7.731/g2^10 + (2*g1^2*t^7.793)/g2^6 + (2*t^7.824)/g2^14 + (2*t^7.855)/(g1^2*g2^22) + 3*g1*g2^17*t^7.934 + 2*g1*g2^13*t^8.026 + (g2^5*t^8.057)/g1 + (2*g2*t^8.15)/g1 - g1*g2^5*t^8.211 - (3*t^8.242)/(g1*g2^3) + g1^3*g2^9*t^8.273 - t^8.274/(g1^3*g2^11) - 3*g1*g2*t^8.304 - (4*t^8.335)/(g1*g2^7) + g1^3*g2^5*t^8.365 - t^8.366/(g1^3*g2^15) + (g1*t^8.396)/g2^3 + 2*g1^3*g2*t^8.458 + g1^4*g2^36*t^8.475 + (2*g1*t^8.489)/g2^7 + t^8.52/(g1*g2^15) + g1^4*g2^32*t^8.568 + (g1*t^8.581)/g2^11 + g1^2*g2^24*t^8.599 + t^8.612/(g1*g2^19) + 2*g1^4*g2^28*t^8.66 + (g1*t^8.674)/g2^15 + g1^2*g2^20*t^8.691 + t^8.705/(g1*g2^23) + 4*g2^12*t^8.723 + 2*g1^4*g2^24*t^8.753 + 2*g1^2*g2^16*t^8.784 + g2^8*t^8.815 + 4*g1^4*g2^20*t^8.845 + t^8.846/g1^2 + 2*g1^2*g2^12*t^8.876 - 6*g2^4*t^8.908 + 3*g1^4*g2^16*t^8.938 - t^8.939/(g1^2*g2^4) + 3*g1^2*g2^8*t^8.969 + t^8.97/(g1^4*g2^12) - (g2^2*t^4.454)/y - (g1*g2^11*t^6.573)/y - (g1*g2^7*t^6.665)/y - t^6.696/(g1*g2*y) + (g1^2*g2^14*t^7.33)/y + (g1^2*g2^10*t^7.423)/y + (2*g2^2*t^7.454)/y + (g1^2*g2^6*t^7.515)/y + (3*t^7.546)/(g2^2*y) + t^7.577/(g1^2*g2^10*y) + t^7.639/(g2^6*y) + (2*g1*g2^13*t^8.026)/y + (3*g1*g2^9*t^8.119)/y + (2*g2*t^8.15)/(g1*y) + (4*g1*g2^5*t^8.211)/y + (4*t^8.242)/(g1*g2^3*y) + (2*g1*g2*t^8.304)/y + (2*t^8.335)/(g1*g2^7*y) + (g1*t^8.396)/(g2^3*y) + t^8.427/(g1*g2^11*y) + (g1*t^8.489)/(g2^7*y) + t^8.52/(g1*g2^15*y) - (g1^2*g2^20*t^8.691)/y - (g1^2*g2^16*t^8.784)/y - (g1^2*g2^12*t^8.876)/y + (g2^4*t^8.908)/y - t^8.939/(g1^2*g2^4*y) + (g1^2*g2^8*t^8.969)/y - g2^2*t^4.454*y - g1*g2^11*t^6.573*y - g1*g2^7*t^6.665*y - (t^6.696*y)/(g1*g2) + g1^2*g2^14*t^7.33*y + g1^2*g2^10*t^7.423*y + 2*g2^2*t^7.454*y + g1^2*g2^6*t^7.515*y + (3*t^7.546*y)/g2^2 + (t^7.577*y)/(g1^2*g2^10) + (t^7.639*y)/g2^6 + 2*g1*g2^13*t^8.026*y + 3*g1*g2^9*t^8.119*y + (2*g2*t^8.15*y)/g1 + 4*g1*g2^5*t^8.211*y + (4*t^8.242*y)/(g1*g2^3) + 2*g1*g2*t^8.304*y + (2*t^8.335*y)/(g1*g2^7) + (g1*t^8.396*y)/g2^3 + (t^8.427*y)/(g1*g2^11) + (g1*t^8.489*y)/g2^7 + (t^8.52*y)/(g1*g2^15) - g1^2*g2^20*t^8.691*y - g1^2*g2^16*t^8.784*y - g1^2*g2^12*t^8.876*y + g2^4*t^8.908*y - (t^8.939*y)/(g1^2*g2^4) + g1^2*g2^8*t^8.969*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46407 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6659 0.8858 0.7517 [M:[0.7042, 0.7042, 1.0, 0.7408, 0.7408], q:[0.7592, 0.5366], qb:[0.5366, 0.2408], phi:[0.4817]] 2*t^2.113 + 2*t^2.223 + 2*t^2.332 + 2*t^2.89 + t^3. + t^3.22 + 3*t^4.225 + 4*t^4.335 + 7*t^4.445 + 4*t^4.555 + 6*t^4.665 + 4*t^5.003 + 4*t^5.113 + 6*t^5.223 + 4*t^5.332 + 2*t^5.442 + 2*t^5.552 + 3*t^5.78 + t^5.89 - 5*t^6. - t^4.445/y - t^4.445*y detail