Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46407 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6659 0.8858 0.7517 [M:[0.7042, 0.7042, 1.0, 0.7408, 0.7408], q:[0.7592, 0.5366], qb:[0.5366, 0.2408], phi:[0.4817]] [M:[[1, 9], [-1, 1], [0, 0], [1, 5], [-1, -3]], q:[[0, -1], [-1, -8]], qb:[[1, 0], [0, 1]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}^{3}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{2}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -5 2*t^2.113 + 2*t^2.223 + 2*t^2.332 + 2*t^2.89 + t^3. + t^3.22 + 3*t^4.225 + 4*t^4.335 + 7*t^4.445 + 4*t^4.555 + 6*t^4.665 + 4*t^5.003 + 4*t^5.113 + 6*t^5.223 + 4*t^5.332 + 2*t^5.442 + 2*t^5.552 + 3*t^5.78 + t^5.89 - 5*t^6. + t^6.11 + 4*t^6.338 + t^6.439 + 6*t^6.448 + 10*t^6.558 + 10*t^6.668 + 14*t^6.777 + 8*t^6.887 + 8*t^6.997 + 6*t^7.115 + 7*t^7.225 + 14*t^7.335 + 10*t^7.445 + 15*t^7.555 + 9*t^7.665 + t^7.775 + 6*t^7.885 + 6*t^7.893 + 4*t^8.003 - 4*t^8.113 - 6*t^8.223 - 12*t^8.332 - 2*t^8.442 + 5*t^8.451 + 8*t^8.561 + 2*t^8.662 + 17*t^8.67 + 2*t^8.772 + 16*t^8.78 + 12*t^8.89 - t^4.445/y - (2*t^6.558)/y - (2*t^6.668)/y + t^7.225/y + (3*t^7.335)/y + (5*t^7.445)/y + (5*t^7.555)/y + t^7.665/y + (4*t^8.003)/y + (6*t^8.113)/y + (8*t^8.223)/y + (6*t^8.332)/y + (2*t^8.442)/y + (2*t^8.552)/y - (3*t^8.67)/y - (3*t^8.78)/y - t^8.89/y - t^4.445*y - 2*t^6.558*y - 2*t^6.668*y + t^7.225*y + 3*t^7.335*y + 5*t^7.445*y + 5*t^7.555*y + t^7.665*y + 4*t^8.003*y + 6*t^8.113*y + 8*t^8.223*y + 6*t^8.332*y + 2*t^8.442*y + 2*t^8.552*y - 3*t^8.67*y - 3*t^8.78*y - t^8.89*y (g2*t^2.113)/g1 + g1*g2^9*t^2.113 + t^2.223/(g1*g2^3) + g1*g2^5*t^2.223 + t^2.332/(g1*g2^7) + g1*g2*t^2.332 + 2*g2^4*t^2.89 + t^3. + t^3.22/g2^8 + (g2^2*t^4.225)/g1^2 + g2^10*t^4.225 + g1^2*g2^18*t^4.225 + t^4.335/(g1^2*g2^2) + 2*g2^6*t^4.335 + g1^2*g2^14*t^4.335 + (2*t^4.445)/(g1^2*g2^6) + 3*g2^2*t^4.445 + 2*g1^2*g2^10*t^4.445 + t^4.555/(g1^2*g2^10) + (2*t^4.555)/g2^2 + g1^2*g2^6*t^4.555 + (2*t^4.665)/(g1^2*g2^14) + (2*t^4.665)/g2^6 + 2*g1^2*g2^2*t^4.665 + (2*g2^5*t^5.003)/g1 + 2*g1*g2^13*t^5.003 + (2*g2*t^5.113)/g1 + 2*g1*g2^9*t^5.113 + (3*t^5.223)/(g1*g2^3) + 3*g1*g2^5*t^5.223 + (2*t^5.332)/(g1*g2^7) + 2*g1*g2*t^5.332 + t^5.442/(g1*g2^11) + (g1*t^5.442)/g2^3 + t^5.552/(g1*g2^15) + (g1*t^5.552)/g2^7 + 3*g2^8*t^5.78 + g2^4*t^5.89 - 3*t^6. - t^6./(g1^2*g2^8) - g1^2*g2^8*t^6. + t^6.11/g2^4 + (g2^3*t^6.338)/g1^3 + (g2^11*t^6.338)/g1 + g1*g2^19*t^6.338 + g1^3*g2^27*t^6.338 + t^6.439/g2^16 + t^6.448/(g1^3*g2) + (2*g2^7*t^6.448)/g1 + 2*g1*g2^15*t^6.448 + g1^3*g2^23*t^6.448 + (2*t^6.558)/(g1^3*g2^5) + (3*g2^3*t^6.558)/g1 + 3*g1*g2^11*t^6.558 + 2*g1^3*g2^19*t^6.558 + (2*t^6.668)/(g1^3*g2^9) + (3*t^6.668)/(g1*g2) + 3*g1*g2^7*t^6.668 + 2*g1^3*g2^15*t^6.668 + (3*t^6.777)/(g1^3*g2^13) + (4*t^6.777)/(g1*g2^5) + 4*g1*g2^3*t^6.777 + 3*g1^3*g2^11*t^6.777 + (2*t^6.887)/(g1^3*g2^17) + (2*t^6.887)/(g1*g2^9) + (2*g1*t^6.887)/g2 + 2*g1^3*g2^7*t^6.887 + (2*t^6.997)/(g1^3*g2^21) + (2*t^6.997)/(g1*g2^13) + (2*g1*t^6.997)/g2^5 + 2*g1^3*g2^3*t^6.997 + (2*g2^6*t^7.115)/g1^2 + 2*g2^14*t^7.115 + 2*g1^2*g2^22*t^7.115 + (2*g2^2*t^7.225)/g1^2 + 3*g2^10*t^7.225 + 2*g1^2*g2^18*t^7.225 + (4*t^7.335)/(g1^2*g2^2) + 6*g2^6*t^7.335 + 4*g1^2*g2^14*t^7.335 + (3*t^7.445)/(g1^2*g2^6) + 4*g2^2*t^7.445 + 3*g1^2*g2^10*t^7.445 + (5*t^7.555)/(g1^2*g2^10) + (5*t^7.555)/g2^2 + 5*g1^2*g2^6*t^7.555 + (3*t^7.665)/(g1^2*g2^14) + (3*t^7.665)/g2^6 + 3*g1^2*g2^2*t^7.665 + t^7.775/g2^10 + (2*t^7.885)/(g1^2*g2^22) + (2*t^7.885)/g2^14 + (2*g1^2*t^7.885)/g2^6 + (3*g2^9*t^7.893)/g1 + 3*g1*g2^17*t^7.893 + (2*g2^5*t^8.003)/g1 + 2*g1*g2^13*t^8.003 - t^8.113/(g1^3*g2^7) - (g2*t^8.113)/g1 - g1*g2^9*t^8.113 - g1^3*g2^17*t^8.113 - t^8.223/(g1^3*g2^11) - (2*t^8.223)/(g1*g2^3) - 2*g1*g2^5*t^8.223 - g1^3*g2^13*t^8.223 - t^8.332/(g1^3*g2^15) - (5*t^8.332)/(g1*g2^7) - 5*g1*g2*t^8.332 - g1^3*g2^9*t^8.332 - t^8.442/(g1*g2^11) - (g1*t^8.442)/g2^3 + (g2^4*t^8.451)/g1^4 + (g2^12*t^8.451)/g1^2 + g2^20*t^8.451 + g1^2*g2^28*t^8.451 + g1^4*g2^36*t^8.451 + t^8.561/g1^4 + (2*g2^8*t^8.561)/g1^2 + 2*g2^16*t^8.561 + 2*g1^2*g2^24*t^8.561 + g1^4*g2^32*t^8.561 + t^8.662/(g1*g2^19) + (g1*t^8.662)/g2^11 + (2*t^8.67)/(g1^4*g2^4) + (3*g2^4*t^8.67)/g1^2 + 7*g2^12*t^8.67 + 3*g1^2*g2^20*t^8.67 + 2*g1^4*g2^28*t^8.67 + t^8.772/(g1*g2^23) + (g1*t^8.772)/g2^15 + (4*t^8.78)/g1^2 + (2*t^8.78)/(g1^4*g2^8) + 4*g2^8*t^8.78 + 4*g1^2*g2^16*t^8.78 + 2*g1^4*g2^24*t^8.78 + (4*t^8.89)/(g1^4*g2^12) + (3*t^8.89)/(g1^2*g2^4) - 2*g2^4*t^8.89 + 3*g1^2*g2^12*t^8.89 + 4*g1^4*g2^20*t^8.89 - (g2^2*t^4.445)/y - (g2^3*t^6.558)/(g1*y) - (g1*g2^11*t^6.558)/y - t^6.668/(g1*g2*y) - (g1*g2^7*t^6.668)/y + (g2^10*t^7.225)/y + t^7.335/(g1^2*g2^2*y) + (g2^6*t^7.335)/y + (g1^2*g2^14*t^7.335)/y + t^7.445/(g1^2*g2^6*y) + (3*g2^2*t^7.445)/y + (g1^2*g2^10*t^7.445)/y + t^7.555/(g1^2*g2^10*y) + (3*t^7.555)/(g2^2*y) + (g1^2*g2^6*t^7.555)/y + t^7.665/(g2^6*y) + (2*g2^5*t^8.003)/(g1*y) + (2*g1*g2^13*t^8.003)/y + (3*g2*t^8.113)/(g1*y) + (3*g1*g2^9*t^8.113)/y + (4*t^8.223)/(g1*g2^3*y) + (4*g1*g2^5*t^8.223)/y + (3*t^8.332)/(g1*g2^7*y) + (3*g1*g2*t^8.332)/y + t^8.442/(g1*g2^11*y) + (g1*t^8.442)/(g2^3*y) + t^8.552/(g1*g2^15*y) + (g1*t^8.552)/(g2^7*y) - (g2^4*t^8.67)/(g1^2*y) - (g2^12*t^8.67)/y - (g1^2*g2^20*t^8.67)/y - t^8.78/(g1^2*y) - (g2^8*t^8.78)/y - (g1^2*g2^16*t^8.78)/y - t^8.89/(g1^2*g2^4*y) + (g2^4*t^8.89)/y - (g1^2*g2^12*t^8.89)/y - g2^2*t^4.445*y - (g2^3*t^6.558*y)/g1 - g1*g2^11*t^6.558*y - (t^6.668*y)/(g1*g2) - g1*g2^7*t^6.668*y + g2^10*t^7.225*y + (t^7.335*y)/(g1^2*g2^2) + g2^6*t^7.335*y + g1^2*g2^14*t^7.335*y + (t^7.445*y)/(g1^2*g2^6) + 3*g2^2*t^7.445*y + g1^2*g2^10*t^7.445*y + (t^7.555*y)/(g1^2*g2^10) + (3*t^7.555*y)/g2^2 + g1^2*g2^6*t^7.555*y + (t^7.665*y)/g2^6 + (2*g2^5*t^8.003*y)/g1 + 2*g1*g2^13*t^8.003*y + (3*g2*t^8.113*y)/g1 + 3*g1*g2^9*t^8.113*y + (4*t^8.223*y)/(g1*g2^3) + 4*g1*g2^5*t^8.223*y + (3*t^8.332*y)/(g1*g2^7) + 3*g1*g2*t^8.332*y + (t^8.442*y)/(g1*g2^11) + (g1*t^8.442*y)/g2^3 + (t^8.552*y)/(g1*g2^15) + (g1*t^8.552*y)/g2^7 - (g2^4*t^8.67*y)/g1^2 - g2^12*t^8.67*y - g1^2*g2^20*t^8.67*y - (t^8.78*y)/g1^2 - g2^8*t^8.78*y - g1^2*g2^16*t^8.78*y - (t^8.89*y)/(g1^2*g2^4) + g2^4*t^8.89*y - g1^2*g2^12*t^8.89*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46991 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{6}$ 0.6455 0.8475 0.7617 [M:[0.7063, 0.7167, 1.0, 0.7371, 0.7475, 1.2833], q:[0.7577, 0.536], qb:[0.5256, 0.2423], phi:[0.4846]] t^2.119 + t^2.211 + t^2.242 + t^2.304 + t^2.335 + 2*t^2.908 + t^3. + t^3.185 + t^3.85 + t^4.238 + t^4.33 + t^4.361 + 2*t^4.423 + 2*t^4.454 + t^4.485 + t^4.515 + 2*t^4.546 + t^4.577 + 2*t^4.608 + 2*t^4.639 + 2*t^4.67 + 2*t^5.026 + 2*t^5.119 + t^5.15 + 3*t^5.211 + 3*t^5.242 + 2*t^5.304 + t^5.335 + t^5.396 + t^5.427 + t^5.489 + t^5.52 + 3*t^5.815 + t^5.908 - 3*t^6. - t^4.454/y - t^4.454*y detail
48237 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}^{2}$ 0.6632 0.8813 0.7525 [M:[0.7251, 0.7251, 1.0, 0.745, 0.745, 1.02], q:[0.755, 0.52], qb:[0.52, 0.245], phi:[0.49]] 2*t^2.175 + 2*t^2.235 + 2*t^2.295 + t^2.94 + t^3. + t^3.06 + t^3.12 + 3*t^4.35 + 4*t^4.41 + 7*t^4.47 + 4*t^4.53 + 6*t^4.59 + 2*t^5.115 + 2*t^5.175 + 6*t^5.235 + 6*t^5.295 + 4*t^5.355 + 2*t^5.415 + t^5.88 - 4*t^6. - t^4.47/y - t^4.47*y detail
48186 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}X_{1}$ 0.6384 0.8362 0.7634 [X:[1.3756], M:[0.6684, 0.6244, 1.0, 0.7513, 0.7073], q:[0.7707, 0.5609], qb:[0.6049, 0.2293], phi:[0.4585]] t^2.005 + t^2.122 + t^2.254 + t^2.371 + t^2.503 + 2*t^2.751 + t^3. + t^3.497 + t^4.01 + 2*t^4.127 + t^4.244 + t^4.259 + 2*t^4.376 + t^4.492 + 2*t^4.508 + 2*t^4.624 + 2*t^4.741 + 3*t^4.756 + 3*t^4.873 + 4*t^5.005 + 3*t^5.122 + 3*t^5.254 + t^5.371 + 5*t^5.503 + t^5.619 + 2*t^5.751 - 2*t^6. - t^4.376/y - t^4.376*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46157 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6466 0.8508 0.76 [M:[0.6983, 0.7146, 1.0, 0.7331], q:[0.7587, 0.543], qb:[0.5267, 0.2413], phi:[0.4826]] t^2.095 + t^2.144 + t^2.199 + t^2.304 + t^2.353 + 2*t^2.896 + t^3. + t^3.209 + t^3.752 + t^4.19 + t^4.239 + t^4.288 + t^4.294 + t^4.343 + 2*t^4.399 + 2*t^4.448 + t^4.497 + t^4.503 + t^4.552 + 2*t^4.608 + 2*t^4.657 + 2*t^4.706 + 2*t^4.991 + 2*t^5.039 + 2*t^5.095 + 3*t^5.199 + 2*t^5.248 + 2*t^5.304 + 2*t^5.353 + t^5.408 + t^5.513 + t^5.562 + 3*t^5.791 + t^5.847 + 2*t^5.896 - 3*t^6. - t^4.448/y - t^4.448*y detail