Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1889 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.6455 0.8475 0.7617 [M:[1.0, 0.9383, 0.7475, 0.7371, 1.0617, 0.7063], q:[0.7577, 0.2423], qb:[0.5256, 0.536], phi:[0.4846]] [M:[[0, 0], [-8, -8], [-5, 3], [3, -5], [8, 8], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }M_{1}\phi_{1}^{2}$ ${}$ -3 t^2.119 + t^2.211 + t^2.242 + t^2.304 + t^2.335 + 2*t^2.908 + t^3. + t^3.185 + t^3.85 + t^4.238 + t^4.33 + t^4.361 + 2*t^4.423 + 2*t^4.454 + t^4.485 + t^4.515 + 2*t^4.546 + t^4.577 + 2*t^4.608 + 2*t^4.639 + 2*t^4.67 + 2*t^5.026 + 2*t^5.119 + t^5.15 + 3*t^5.211 + 3*t^5.242 + 2*t^5.304 + t^5.335 + t^5.396 + t^5.427 + t^5.489 + t^5.52 + 3*t^5.815 + t^5.908 - 3*t^6. - t^6.031 + t^6.061 + 2*t^6.092 + t^6.154 + t^6.185 + t^6.356 + t^6.37 + t^6.449 + t^6.48 + 2*t^6.541 + t^6.573 + 2*t^6.634 + 2*t^6.665 + t^6.696 + 3*t^6.726 + t^6.727 + 4*t^6.758 + 2*t^6.789 + 2*t^6.819 + t^6.82 + 3*t^6.85 + 2*t^6.881 + 2*t^6.911 + 2*t^6.912 + 2*t^6.943 + 2*t^6.974 + 2*t^7.005 + t^7.035 + 2*t^7.145 + 2*t^7.238 + t^7.269 + 4*t^7.33 + 3*t^7.361 + t^7.392 + 3*t^7.423 + 2*t^7.454 + t^7.485 + 5*t^7.515 + 4*t^7.546 + 4*t^7.577 + 3*t^7.608 + 2*t^7.639 + 2*t^7.67 + t^7.7 + t^7.731 + 2*t^7.793 + 2*t^7.824 + 2*t^7.855 + 3*t^7.934 + 2*t^8.026 + t^8.057 + 2*t^8.15 - t^8.211 - 3*t^8.242 + t^8.273 - t^8.274 - 3*t^8.304 - 4*t^8.335 + t^8.365 - t^8.366 + t^8.396 + 2*t^8.458 + t^8.475 + 2*t^8.489 + t^8.52 + t^8.568 + t^8.581 + t^8.599 + t^8.612 + 2*t^8.66 + t^8.674 + t^8.691 + t^8.705 + 4*t^8.723 + 2*t^8.753 + 2*t^8.784 + t^8.815 + 4*t^8.845 + t^8.846 + 2*t^8.876 - 6*t^8.908 + 3*t^8.938 - t^8.939 + 3*t^8.969 + t^8.97 - t^4.454/y - t^6.573/y - t^6.665/y - t^6.696/y + t^7.33/y + t^7.423/y + (2*t^7.454)/y + t^7.515/y + (3*t^7.546)/y + t^7.577/y + t^7.639/y + (2*t^8.026)/y + (3*t^8.119)/y + (2*t^8.15)/y + (4*t^8.211)/y + (4*t^8.242)/y + (2*t^8.304)/y + (2*t^8.335)/y + t^8.396/y + t^8.427/y + t^8.489/y + t^8.52/y - t^8.691/y - t^8.784/y - t^8.876/y + t^8.908/y - t^8.939/y + t^8.969/y - t^4.454*y - t^6.573*y - t^6.665*y - t^6.696*y + t^7.33*y + t^7.423*y + 2*t^7.454*y + t^7.515*y + 3*t^7.546*y + t^7.577*y + t^7.639*y + 2*t^8.026*y + 3*t^8.119*y + 2*t^8.15*y + 4*t^8.211*y + 4*t^8.242*y + 2*t^8.304*y + 2*t^8.335*y + t^8.396*y + t^8.427*y + t^8.489*y + t^8.52*y - t^8.691*y - t^8.784*y - t^8.876*y + t^8.908*y - t^8.939*y + t^8.969*y t^2.119/(g1*g2^9) + (g1^3*t^2.211)/g2^5 + (g2^3*t^2.242)/g1^5 + (g1^7*t^2.304)/g2 + (g2^7*t^2.335)/g1 + (2*t^2.908)/(g1^4*g2^4) + t^3. + g1^8*g2^8*t^3.185 + g1^9*g2*t^3.85 + t^4.238/(g1^2*g2^18) + (g1^2*t^4.33)/g2^14 + t^4.361/(g1^6*g2^6) + (2*g1^6*t^4.423)/g2^10 + (2*t^4.454)/(g1^2*g2^2) + (g2^6*t^4.485)/g1^10 + (g1^10*t^4.515)/g2^6 + 2*g1^2*g2^2*t^4.546 + (g2^10*t^4.577)/g1^6 + (2*g1^14*t^4.608)/g2^2 + 2*g1^6*g2^6*t^4.639 + (2*g2^14*t^4.67)/g1^2 + (2*t^5.026)/(g1^5*g2^13) + (2*t^5.119)/(g1*g2^9) + t^5.15/(g1^9*g2) + (3*g1^3*t^5.211)/g2^5 + (3*g2^3*t^5.242)/g1^5 + (2*g1^7*t^5.304)/g2 + (g2^7*t^5.335)/g1 + g1^11*g2^3*t^5.396 + g1^3*g2^11*t^5.427 + g1^15*g2^7*t^5.489 + g1^7*g2^15*t^5.52 + (3*t^5.815)/(g1^8*g2^8) + t^5.908/(g1^4*g2^4) - 3*t^6. - (g2^8*t^6.031)/g1^8 + (g1^12*t^6.061)/g2^4 + 2*g1^4*g2^4*t^6.092 + g1^16*t^6.154 + g1^8*g2^8*t^6.185 + t^6.356/(g1^3*g2^27) + g1^16*g2^16*t^6.37 + (g1*t^6.449)/g2^23 + t^6.48/(g1^7*g2^15) + (2*g1^5*t^6.541)/g2^19 + t^6.573/(g1^3*g2^11) + (2*g1^9*t^6.634)/g2^15 + (2*g1*t^6.665)/g2^7 + (g2*t^6.696)/g1^7 + (3*g1^13*t^6.726)/g2^11 + (g2^9*t^6.727)/g1^15 + (4*g1^5*t^6.758)/g2^3 + (2*g2^5*t^6.789)/g1^3 + (2*g1^17*t^6.819)/g2^7 + (g2^13*t^6.82)/g1^11 + 3*g1^9*g2*t^6.85 + 2*g1*g2^9*t^6.881 + (2*g1^21*t^6.911)/g2^3 + (2*g2^17*t^6.912)/g1^7 + 2*g1^13*g2^5*t^6.943 + 2*g1^5*g2^13*t^6.974 + (2*g2^21*t^7.005)/g1^3 + g1^17*g2^9*t^7.035 + (2*t^7.145)/(g1^6*g2^22) + (2*t^7.238)/(g1^2*g2^18) + t^7.269/(g1^10*g2^10) + (4*g1^2*t^7.33)/g2^14 + (3*t^7.361)/(g1^6*g2^6) + (g2^2*t^7.392)/g1^14 + (3*g1^6*t^7.423)/g2^10 + (2*t^7.454)/(g1^2*g2^2) + (g2^6*t^7.485)/g1^10 + (5*g1^10*t^7.515)/g2^6 + 4*g1^2*g2^2*t^7.546 + (4*g2^10*t^7.577)/g1^6 + (3*g1^14*t^7.608)/g2^2 + 2*g1^6*g2^6*t^7.639 + (2*g2^14*t^7.67)/g1^2 + g1^18*g2^2*t^7.7 + g1^10*g2^10*t^7.731 + 2*g1^22*g2^6*t^7.793 + 2*g1^14*g2^14*t^7.824 + 2*g1^6*g2^22*t^7.855 + (3*t^7.934)/(g1^9*g2^17) + (2*t^8.026)/(g1^5*g2^13) + t^8.057/(g1^13*g2^5) + (2*t^8.15)/(g1^9*g2) - (g1^3*t^8.211)/g2^5 - (3*g2^3*t^8.242)/g1^5 + (g1^15*t^8.273)/g2^9 - (g2^11*t^8.274)/g1^13 - (3*g1^7*t^8.304)/g2 - (4*g2^7*t^8.335)/g1 + (g1^19*t^8.365)/g2^5 - (g2^15*t^8.366)/g1^9 + g1^11*g2^3*t^8.396 + (2*g1^23*t^8.458)/g2 + t^8.475/(g1^4*g2^36) + 2*g1^15*g2^7*t^8.489 + g1^7*g2^15*t^8.52 + t^8.568/g2^32 + g1^19*g2^11*t^8.581 + t^8.599/(g1^8*g2^24) + g1^11*g2^19*t^8.612 + (2*g1^4*t^8.66)/g2^28 + g1^23*g2^15*t^8.674 + t^8.691/(g1^4*g2^20) + g1^15*g2^23*t^8.705 + (4*t^8.723)/(g1^12*g2^12) + (2*g1^8*t^8.753)/g2^24 + (2*t^8.784)/g2^16 + t^8.815/(g1^8*g2^8) + (4*g1^12*t^8.845)/g2^20 + t^8.846/g1^16 + (2*g1^4*t^8.876)/g2^12 - (6*t^8.908)/(g1^4*g2^4) + (3*g1^16*t^8.938)/g2^16 - (g2^4*t^8.939)/g1^12 + (3*g1^8*t^8.969)/g2^8 + (g2^12*t^8.97)/g1^20 - t^4.454/(g1^2*g2^2*y) - t^6.573/(g1^3*g2^11*y) - (g1*t^6.665)/(g2^7*y) - (g2*t^6.696)/(g1^7*y) + (g1^2*t^7.33)/(g2^14*y) + (g1^6*t^7.423)/(g2^10*y) + (2*t^7.454)/(g1^2*g2^2*y) + (g1^10*t^7.515)/(g2^6*y) + (3*g1^2*g2^2*t^7.546)/y + (g2^10*t^7.577)/(g1^6*y) + (g1^6*g2^6*t^7.639)/y + (2*t^8.026)/(g1^5*g2^13*y) + (3*t^8.119)/(g1*g2^9*y) + (2*t^8.15)/(g1^9*g2*y) + (4*g1^3*t^8.211)/(g2^5*y) + (4*g2^3*t^8.242)/(g1^5*y) + (2*g1^7*t^8.304)/(g2*y) + (2*g2^7*t^8.335)/(g1*y) + (g1^11*g2^3*t^8.396)/y + (g1^3*g2^11*t^8.427)/y + (g1^15*g2^7*t^8.489)/y + (g1^7*g2^15*t^8.52)/y - t^8.691/(g1^4*g2^20*y) - t^8.784/(g2^16*y) - (g1^4*t^8.876)/(g2^12*y) + t^8.908/(g1^4*g2^4*y) - (g2^4*t^8.939)/(g1^12*y) + (g1^8*t^8.969)/(g2^8*y) - (t^4.454*y)/(g1^2*g2^2) - (t^6.573*y)/(g1^3*g2^11) - (g1*t^6.665*y)/g2^7 - (g2*t^6.696*y)/g1^7 + (g1^2*t^7.33*y)/g2^14 + (g1^6*t^7.423*y)/g2^10 + (2*t^7.454*y)/(g1^2*g2^2) + (g1^10*t^7.515*y)/g2^6 + 3*g1^2*g2^2*t^7.546*y + (g2^10*t^7.577*y)/g1^6 + g1^6*g2^6*t^7.639*y + (2*t^8.026*y)/(g1^5*g2^13) + (3*t^8.119*y)/(g1*g2^9) + (2*t^8.15*y)/(g1^9*g2) + (4*g1^3*t^8.211*y)/g2^5 + (4*g2^3*t^8.242*y)/g1^5 + (2*g1^7*t^8.304*y)/g2 + (2*g2^7*t^8.335*y)/g1 + g1^11*g2^3*t^8.396*y + g1^3*g2^11*t^8.427*y + g1^15*g2^7*t^8.489*y + g1^7*g2^15*t^8.52*y - (t^8.691*y)/(g1^4*g2^20) - (t^8.784*y)/g2^16 - (g1^4*t^8.876*y)/g2^12 + (t^8.908*y)/(g1^4*g2^4) - (g2^4*t^8.939*y)/g1^12 + (g1^8*t^8.969*y)/g2^8


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2912 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ 0.6659 0.8858 0.7517 [M:[1.0, 0.9268, 0.7408, 0.7408, 1.0732, 0.7042, 0.7042], q:[0.7592, 0.2408], qb:[0.5366, 0.5366], phi:[0.4817]] 2*t^2.113 + 2*t^2.223 + 2*t^2.332 + 2*t^2.89 + t^3. + t^3.22 + 3*t^4.225 + 4*t^4.335 + 7*t^4.445 + 4*t^4.555 + 6*t^4.665 + 4*t^5.003 + 4*t^5.113 + 6*t^5.223 + 4*t^5.332 + 2*t^5.442 + 2*t^5.552 + 3*t^5.78 + t^5.89 - 5*t^6. - t^4.445/y - t^4.445*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
550 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ 0.6253 0.8097 0.7722 [M:[1.0, 0.9511, 0.7439, 0.7439, 1.0489], q:[0.7561, 0.2439], qb:[0.5244, 0.5244], phi:[0.4878]] 2*t^2.232 + 2*t^2.305 + 2*t^2.927 + t^3. + t^3.147 + 2*t^3.842 + 3*t^4.463 + 4*t^4.537 + 6*t^4.61 + 2*t^5.158 + 6*t^5.232 + 2*t^5.305 + 2*t^5.378 + 2*t^5.452 + 3*t^5.853 + t^5.927 - 5*t^6. - t^4.463/y - t^4.463*y detail