Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1889 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ | 0.6455 | 0.8475 | 0.7617 | [X:[], M:[1.0, 0.9383, 0.7475, 0.7371, 1.0617, 0.7063], q:[0.7577, 0.2423], qb:[0.5256, 0.536], phi:[0.4846]] | [X:[], M:[[0, 0], [-8, -8], [-5, 3], [3, -5], [8, 8], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_4$, $ M_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_1$, $ M_5$, $ q_1\tilde{q}_1$, $ M_6^2$, $ M_4M_6$, $ M_3M_6$, $ M_4^2$, $ M_6q_2\tilde{q}_1$, $ M_3M_4$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ M_3^2$, $ M_4q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_6\phi_1^2$, $ M_6\phi_1q_2^2$, $ M_1M_6$, $ M_4\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_3\phi_1^2$, $ M_3\phi_1q_2^2$, $ M_1M_4$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1M_3$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_5$, $ M_3M_5$, $ M_5q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ \phi_1^4$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2^4$, $ M_1\phi_1^2$ | . | -3 | t^2.12 + t^2.21 + t^2.24 + t^2.3 + t^2.33 + 2*t^2.91 + t^3. + t^3.18 + t^3.85 + t^4.24 + t^4.33 + t^4.36 + 2*t^4.42 + 2*t^4.45 + t^4.48 + t^4.52 + 2*t^4.55 + t^4.58 + 2*t^4.61 + 2*t^4.64 + 2*t^4.67 + 2*t^5.03 + 2*t^5.12 + t^5.15 + 3*t^5.21 + 3*t^5.24 + 2*t^5.3 + t^5.33 + t^5.4 + t^5.43 + t^5.49 + t^5.52 + 3*t^5.82 + t^5.91 - 3*t^6. - t^6.03 + t^6.06 + 2*t^6.09 + t^6.15 + t^6.18 + t^6.36 + t^6.37 + t^6.45 + t^6.48 + 2*t^6.54 + t^6.57 + 2*t^6.63 + 2*t^6.67 + t^6.7 + 4*t^6.73 + 4*t^6.76 + 2*t^6.79 + 3*t^6.82 + 3*t^6.85 + 2*t^6.88 + 4*t^6.91 + 2*t^6.94 + 2*t^6.97 + 2*t^7. + t^7.04 + 2*t^7.15 + 2*t^7.24 + t^7.27 + 4*t^7.33 + 3*t^7.36 + t^7.39 + 3*t^7.42 + 2*t^7.45 + t^7.48 + 5*t^7.52 + 4*t^7.55 + 4*t^7.58 + 3*t^7.61 + 2*t^7.64 + 2*t^7.67 + t^7.7 + t^7.73 + 2*t^7.79 + 2*t^7.82 + 2*t^7.85 + 3*t^7.93 + 2*t^8.03 + t^8.06 + 2*t^8.15 - t^8.21 - 3*t^8.24 - 3*t^8.3 - 4*t^8.33 + t^8.4 + 2*t^8.46 + t^8.48 + 2*t^8.49 + t^8.52 + t^8.57 + t^8.58 + t^8.6 + t^8.61 + 2*t^8.66 + t^8.67 + t^8.69 + t^8.7 + 4*t^8.72 + 2*t^8.75 + 2*t^8.78 + t^8.82 + 5*t^8.85 + 2*t^8.88 - 6*t^8.91 + 2*t^8.94 + 4*t^8.97 - t^4.45/y - t^6.57/y - t^6.67/y - t^6.7/y + t^7.33/y + t^7.42/y + (2*t^7.45)/y + t^7.52/y + (3*t^7.55)/y + t^7.58/y + t^7.64/y + (2*t^8.03)/y + (3*t^8.12)/y + (2*t^8.15)/y + (4*t^8.21)/y + (4*t^8.24)/y + (2*t^8.3)/y + (2*t^8.33)/y + t^8.4/y + t^8.43/y + t^8.49/y + t^8.52/y - t^8.69/y - t^8.78/y - t^8.88/y + t^8.91/y - t^8.94/y + t^8.97/y - t^4.45*y - t^6.57*y - t^6.67*y - t^6.7*y + t^7.33*y + t^7.42*y + 2*t^7.45*y + t^7.52*y + 3*t^7.55*y + t^7.58*y + t^7.64*y + 2*t^8.03*y + 3*t^8.12*y + 2*t^8.15*y + 4*t^8.21*y + 4*t^8.24*y + 2*t^8.3*y + 2*t^8.33*y + t^8.4*y + t^8.43*y + t^8.49*y + t^8.52*y - t^8.69*y - t^8.78*y - t^8.88*y + t^8.91*y - t^8.94*y + t^8.97*y | t^2.12/(g1*g2^9) + (g1^3*t^2.21)/g2^5 + (g2^3*t^2.24)/g1^5 + (g1^7*t^2.3)/g2 + (g2^7*t^2.33)/g1 + (2*t^2.91)/(g1^4*g2^4) + t^3. + g1^8*g2^8*t^3.18 + g1^9*g2*t^3.85 + t^4.24/(g1^2*g2^18) + (g1^2*t^4.33)/g2^14 + t^4.36/(g1^6*g2^6) + (2*g1^6*t^4.42)/g2^10 + (2*t^4.45)/(g1^2*g2^2) + (g2^6*t^4.48)/g1^10 + (g1^10*t^4.52)/g2^6 + 2*g1^2*g2^2*t^4.55 + (g2^10*t^4.58)/g1^6 + (2*g1^14*t^4.61)/g2^2 + 2*g1^6*g2^6*t^4.64 + (2*g2^14*t^4.67)/g1^2 + (2*t^5.03)/(g1^5*g2^13) + (2*t^5.12)/(g1*g2^9) + t^5.15/(g1^9*g2) + (3*g1^3*t^5.21)/g2^5 + (3*g2^3*t^5.24)/g1^5 + (2*g1^7*t^5.3)/g2 + (g2^7*t^5.33)/g1 + g1^11*g2^3*t^5.4 + g1^3*g2^11*t^5.43 + g1^15*g2^7*t^5.49 + g1^7*g2^15*t^5.52 + (3*t^5.82)/(g1^8*g2^8) + t^5.91/(g1^4*g2^4) - 3*t^6. - (g2^8*t^6.03)/g1^8 + (g1^12*t^6.06)/g2^4 + 2*g1^4*g2^4*t^6.09 + g1^16*t^6.15 + g1^8*g2^8*t^6.18 + t^6.36/(g1^3*g2^27) + g1^16*g2^16*t^6.37 + (g1*t^6.45)/g2^23 + t^6.48/(g1^7*g2^15) + (2*g1^5*t^6.54)/g2^19 + t^6.57/(g1^3*g2^11) + (2*g1^9*t^6.63)/g2^15 + (2*g1*t^6.67)/g2^7 + (g2*t^6.7)/g1^7 + (3*g1^13*t^6.73)/g2^11 + (g2^9*t^6.73)/g1^15 + (4*g1^5*t^6.76)/g2^3 + (2*g2^5*t^6.79)/g1^3 + (2*g1^17*t^6.82)/g2^7 + (g2^13*t^6.82)/g1^11 + 3*g1^9*g2*t^6.85 + 2*g1*g2^9*t^6.88 + (2*g1^21*t^6.91)/g2^3 + (2*g2^17*t^6.91)/g1^7 + 2*g1^13*g2^5*t^6.94 + 2*g1^5*g2^13*t^6.97 + (2*g2^21*t^7.)/g1^3 + g1^17*g2^9*t^7.04 + (2*t^7.15)/(g1^6*g2^22) + (2*t^7.24)/(g1^2*g2^18) + t^7.27/(g1^10*g2^10) + (4*g1^2*t^7.33)/g2^14 + (3*t^7.36)/(g1^6*g2^6) + (g2^2*t^7.39)/g1^14 + (3*g1^6*t^7.42)/g2^10 + (2*t^7.45)/(g1^2*g2^2) + (g2^6*t^7.48)/g1^10 + (5*g1^10*t^7.52)/g2^6 + 4*g1^2*g2^2*t^7.55 + (4*g2^10*t^7.58)/g1^6 + (3*g1^14*t^7.61)/g2^2 + 2*g1^6*g2^6*t^7.64 + (2*g2^14*t^7.67)/g1^2 + g1^18*g2^2*t^7.7 + g1^10*g2^10*t^7.73 + 2*g1^22*g2^6*t^7.79 + 2*g1^14*g2^14*t^7.82 + 2*g1^6*g2^22*t^7.85 + (3*t^7.93)/(g1^9*g2^17) + (2*t^8.03)/(g1^5*g2^13) + t^8.06/(g1^13*g2^5) + (2*t^8.15)/(g1^9*g2) - (g1^3*t^8.21)/g2^5 - (3*g2^3*t^8.24)/g1^5 + (g1^15*t^8.27)/g2^9 - (g2^11*t^8.27)/g1^13 - (3*g1^7*t^8.3)/g2 - (4*g2^7*t^8.33)/g1 + (g1^19*t^8.37)/g2^5 - (g2^15*t^8.37)/g1^9 + g1^11*g2^3*t^8.4 + (2*g1^23*t^8.46)/g2 + t^8.48/(g1^4*g2^36) + 2*g1^15*g2^7*t^8.49 + g1^7*g2^15*t^8.52 + t^8.57/g2^32 + g1^19*g2^11*t^8.58 + t^8.6/(g1^8*g2^24) + g1^11*g2^19*t^8.61 + (2*g1^4*t^8.66)/g2^28 + g1^23*g2^15*t^8.67 + t^8.69/(g1^4*g2^20) + g1^15*g2^23*t^8.7 + (4*t^8.72)/(g1^12*g2^12) + (2*g1^8*t^8.75)/g2^24 + (2*t^8.78)/g2^16 + t^8.82/(g1^8*g2^8) + t^8.85/g1^16 + (4*g1^12*t^8.85)/g2^20 + (2*g1^4*t^8.88)/g2^12 - (6*t^8.91)/(g1^4*g2^4) + (3*g1^16*t^8.94)/g2^16 - (g2^4*t^8.94)/g1^12 + (3*g1^8*t^8.97)/g2^8 + (g2^12*t^8.97)/g1^20 - t^4.45/(g1^2*g2^2*y) - t^6.57/(g1^3*g2^11*y) - (g1*t^6.67)/(g2^7*y) - (g2*t^6.7)/(g1^7*y) + (g1^2*t^7.33)/(g2^14*y) + (g1^6*t^7.42)/(g2^10*y) + (2*t^7.45)/(g1^2*g2^2*y) + (g1^10*t^7.52)/(g2^6*y) + (3*g1^2*g2^2*t^7.55)/y + (g2^10*t^7.58)/(g1^6*y) + (g1^6*g2^6*t^7.64)/y + (2*t^8.03)/(g1^5*g2^13*y) + (3*t^8.12)/(g1*g2^9*y) + (2*t^8.15)/(g1^9*g2*y) + (4*g1^3*t^8.21)/(g2^5*y) + (4*g2^3*t^8.24)/(g1^5*y) + (2*g1^7*t^8.3)/(g2*y) + (2*g2^7*t^8.33)/(g1*y) + (g1^11*g2^3*t^8.4)/y + (g1^3*g2^11*t^8.43)/y + (g1^15*g2^7*t^8.49)/y + (g1^7*g2^15*t^8.52)/y - t^8.69/(g1^4*g2^20*y) - t^8.78/(g2^16*y) - (g1^4*t^8.88)/(g2^12*y) + t^8.91/(g1^4*g2^4*y) - (g2^4*t^8.94)/(g1^12*y) + (g1^8*t^8.97)/(g2^8*y) - (t^4.45*y)/(g1^2*g2^2) - (t^6.57*y)/(g1^3*g2^11) - (g1*t^6.67*y)/g2^7 - (g2*t^6.7*y)/g1^7 + (g1^2*t^7.33*y)/g2^14 + (g1^6*t^7.42*y)/g2^10 + (2*t^7.45*y)/(g1^2*g2^2) + (g1^10*t^7.52*y)/g2^6 + 3*g1^2*g2^2*t^7.55*y + (g2^10*t^7.58*y)/g1^6 + g1^6*g2^6*t^7.64*y + (2*t^8.03*y)/(g1^5*g2^13) + (3*t^8.12*y)/(g1*g2^9) + (2*t^8.15*y)/(g1^9*g2) + (4*g1^3*t^8.21*y)/g2^5 + (4*g2^3*t^8.24*y)/g1^5 + (2*g1^7*t^8.3*y)/g2 + (2*g2^7*t^8.33*y)/g1 + g1^11*g2^3*t^8.4*y + g1^3*g2^11*t^8.43*y + g1^15*g2^7*t^8.49*y + g1^7*g2^15*t^8.52*y - (t^8.69*y)/(g1^4*g2^20) - (t^8.78*y)/g2^16 - (g1^4*t^8.88*y)/g2^12 + (t^8.91*y)/(g1^4*g2^4) - (g2^4*t^8.94*y)/g1^12 + (g1^8*t^8.97*y)/g2^8 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2912 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ | 0.6659 | 0.8858 | 0.7517 | [X:[], M:[1.0, 0.9268, 0.7408, 0.7408, 1.0732, 0.7042, 0.7042], q:[0.7592, 0.2408], qb:[0.5366, 0.5366], phi:[0.4817]] | 2*t^2.11 + 2*t^2.22 + 2*t^2.33 + 2*t^2.89 + t^3. + t^3.22 + 3*t^4.23 + 4*t^4.34 + 7*t^4.45 + 4*t^4.55 + 6*t^4.66 + 4*t^5. + 4*t^5.11 + 6*t^5.22 + 4*t^5.33 + 2*t^5.44 + 2*t^5.55 + 3*t^5.78 + t^5.89 - 5*t^6. - t^4.45/y - t^4.45*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
550 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ | 0.6253 | 0.8097 | 0.7722 | [X:[], M:[1.0, 0.9511, 0.7439, 0.7439, 1.0489], q:[0.7561, 0.2439], qb:[0.5244, 0.5244], phi:[0.4878]] | 2*t^2.23 + 2*t^2.3 + 2*t^2.93 + t^3. + t^3.15 + 2*t^3.84 + 3*t^4.46 + 4*t^4.54 + 6*t^4.61 + 2*t^5.16 + 6*t^5.23 + 2*t^5.3 + 2*t^5.38 + 2*t^5.45 + 3*t^5.85 + t^5.93 - 5*t^6. - t^4.46/y - t^4.46*y | detail |