Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46938 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ | 0.7134 | 0.8806 | 0.8101 | [M:[0.846, 0.8524, 1.0534, 1.0471, 0.9466, 0.9529], q:[0.6272, 0.5267], qb:[0.5203, 0.4262], phi:[0.4749]] | [M:[[12, 20], [0, 16], [-8, -8], [4, -4], [8, 8], [-4, 4]], q:[[-8, -16], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[1, 3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{6}^{2}$, ${ }M_{4}\phi_{1}^{2}$ | ${}$ | -2 | t^2.538 + t^2.557 + t^2.84 + t^2.849 + t^2.859 + t^3.141 + t^3.16 + t^3.982 + t^4.264 + t^4.283 + t^4.547 + t^4.566 + 2*t^4.585 + t^4.867 + t^4.886 + t^5.076 + t^5.095 + t^5.115 + t^5.188 + t^5.378 + t^5.387 + t^5.397 + t^5.407 + t^5.416 + t^5.679 + t^5.689 + 2*t^5.698 + t^5.708 + t^5.718 + t^5.99 - 2*t^6. + t^6.01 - 2*t^6.302 + t^6.52 + t^6.539 - t^6.603 + t^6.802 + 2*t^6.822 + t^6.831 + 2*t^6.841 + t^7.085 + 2*t^7.104 + t^7.114 + 3*t^7.123 + 3*t^7.142 + t^7.386 + t^7.396 + 2*t^7.405 + 2*t^7.425 + t^7.434 + 2*t^7.444 + t^7.614 + t^7.634 + t^7.653 + t^7.672 + t^7.688 - t^7.697 + t^7.707 + t^7.726 - t^7.736 + 2*t^7.745 + t^7.916 + t^7.926 + t^7.935 + t^7.945 + t^7.954 + 2*t^7.964 + t^7.973 - t^8.018 + t^8.047 + t^8.217 + t^8.227 + 2*t^8.237 + 2*t^8.246 + t^8.256 + 2*t^8.265 + t^8.275 - t^8.339 + t^8.348 + 2*t^8.529 - 2*t^8.538 + 3*t^8.548 - 3*t^8.557 + 3*t^8.567 + t^8.811 - t^8.82 + t^8.83 - 4*t^8.84 - 5*t^8.859 + 2*t^8.868 - t^4.425/y - t^6.963/y - t^6.982/y - t^7.274/y + t^7.575/y + t^7.867/y + t^7.886/y + t^8.095/y + t^8.378/y + t^8.387/y + (2*t^8.397)/y + t^8.407/y + t^8.416/y + t^8.679/y + t^8.689/y + (3*t^8.698)/y + t^8.708/y + t^8.718/y + t^8.981/y + t^8.99/y - t^4.425*y - t^6.963*y - t^6.982*y - t^7.274*y + t^7.575*y + t^7.867*y + t^7.886*y + t^8.095*y + t^8.378*y + t^8.387*y + 2*t^8.397*y + t^8.407*y + t^8.416*y + t^8.679*y + t^8.689*y + 3*t^8.698*y + t^8.708*y + t^8.718*y + t^8.981*y + t^8.99*y | g1^12*g2^20*t^2.538 + g2^16*t^2.557 + g1^8*g2^8*t^2.84 + g1^2*g2^6*t^2.849 + (g2^4*t^2.859)/g1^4 + (g1^4*t^3.141)/g2^4 + t^3.16/(g1^8*g2^8) + g1*g2^19*t^3.982 + g1^9*g2^11*t^4.264 + (g2^7*t^4.283)/g1^3 + g1^17*g2^3*t^4.547 + (g1^5*t^4.566)/g2 + (2*t^4.585)/(g1^7*g2^5) + (g1*t^4.867)/g2^13 + t^4.886/(g1^11*g2^17) + g1^24*g2^40*t^5.076 + g1^12*g2^36*t^5.095 + g2^32*t^5.115 + t^5.188/(g1^15*g2^29) + g1^20*g2^28*t^5.378 + g1^14*g2^26*t^5.387 + g1^8*g2^24*t^5.397 + g1^2*g2^22*t^5.407 + (g2^20*t^5.416)/g1^4 + g1^16*g2^16*t^5.679 + g1^10*g2^14*t^5.689 + 2*g1^4*g2^12*t^5.698 + (g2^10*t^5.708)/g1^2 + (g2^8*t^5.718)/g1^8 + g1^6*g2^2*t^5.99 - 2*t^6. + t^6.01/(g1^6*g2^2) - (2*t^6.302)/(g1^4*g2^12) + g1^13*g2^39*t^6.52 + g1*g2^35*t^6.539 - t^6.603/(g1^8*g2^24) + g1^21*g2^31*t^6.802 + 2*g1^9*g2^27*t^6.822 + g1^3*g2^25*t^6.831 + (2*g2^23*t^6.841)/g1^3 + g1^29*g2^23*t^7.085 + 2*g1^17*g2^19*t^7.104 + g1^11*g2^17*t^7.114 + 3*g1^5*g2^15*t^7.123 + (3*g2^11*t^7.142)/g1^7 + g1^25*g2^11*t^7.386 + g1^19*g2^9*t^7.396 + 2*g1^13*g2^7*t^7.405 + 2*g1*g2^3*t^7.425 + (g2*t^7.434)/g1^5 + (2*t^7.444)/(g1^11*g2) + g1^36*g2^60*t^7.614 + g1^24*g2^56*t^7.634 + g1^12*g2^52*t^7.653 + g2^48*t^7.672 + (g1^21*t^7.688)/g2 - (g1^15*t^7.697)/g2^3 + (g1^9*t^7.707)/g2^5 + t^7.726/(g1^3*g2^9) - t^7.736/(g1^9*g2^11) + (2*t^7.745)/(g1^15*g2^13) + g1^32*g2^48*t^7.916 + g1^26*g2^46*t^7.926 + g1^20*g2^44*t^7.935 + g1^14*g2^42*t^7.945 + g1^8*g2^40*t^7.954 + 2*g1^2*g2^38*t^7.964 + (g2^36*t^7.973)/g1^4 - t^8.018/(g1*g2^19) + t^8.047/(g1^19*g2^25) + g1^28*g2^36*t^8.217 + g1^22*g2^34*t^8.227 + 2*g1^16*g2^32*t^8.237 + 2*g1^10*g2^30*t^8.246 + g1^4*g2^28*t^8.256 + (2*g2^26*t^8.265)/g1^2 + (g2^24*t^8.275)/g1^8 - t^8.339/(g1^17*g2^35) + t^8.348/(g1^23*g2^37) + 2*g1^18*g2^22*t^8.529 - 2*g1^12*g2^20*t^8.538 + 3*g1^6*g2^18*t^8.548 - 3*g2^16*t^8.557 + (3*g2^14*t^8.567)/g1^6 + g1^26*g2^14*t^8.811 - g1^20*g2^12*t^8.82 + g1^14*g2^10*t^8.83 - 4*g1^8*g2^8*t^8.84 - (5*g2^4*t^8.859)/g1^4 + (2*g2^2*t^8.868)/g1^10 - (g1*g2^3*t^4.425)/y - (g1^13*g2^23*t^6.963)/y - (g1*g2^19*t^6.982)/y - (g1^3*g2^9*t^7.274)/y + t^7.575/(g1*g2^3*y) + (g1*t^7.867)/(g2^13*y) + t^7.886/(g1^11*g2^17*y) + (g1^12*g2^36*t^8.095)/y + (g1^20*g2^28*t^8.378)/y + (g1^14*g2^26*t^8.387)/y + (2*g1^8*g2^24*t^8.397)/y + (g1^2*g2^22*t^8.407)/y + (g2^20*t^8.416)/(g1^4*y) + (g1^16*g2^16*t^8.679)/y + (g1^10*g2^14*t^8.689)/y + (3*g1^4*g2^12*t^8.698)/y + (g2^10*t^8.708)/(g1^2*y) + (g2^8*t^8.718)/(g1^8*y) + (g1^12*g2^4*t^8.981)/y + (g1^6*g2^2*t^8.99)/y - g1*g2^3*t^4.425*y - g1^13*g2^23*t^6.963*y - g1*g2^19*t^6.982*y - g1^3*g2^9*t^7.274*y + (t^7.575*y)/(g1*g2^3) + (g1*t^7.867*y)/g2^13 + (t^7.886*y)/(g1^11*g2^17) + g1^12*g2^36*t^8.095*y + g1^20*g2^28*t^8.378*y + g1^14*g2^26*t^8.387*y + 2*g1^8*g2^24*t^8.397*y + g1^2*g2^22*t^8.407*y + (g2^20*t^8.416*y)/g1^4 + g1^16*g2^16*t^8.679*y + g1^10*g2^14*t^8.689*y + 3*g1^4*g2^12*t^8.698*y + (g2^10*t^8.708*y)/g1^2 + (g2^8*t^8.718*y)/g1^8 + g1^12*g2^4*t^8.981*y + g1^6*g2^2*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55069 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}M_{5}$ | 0.7013 | 0.8626 | 0.813 | [M:[0.9771, 0.8854, 0.9771, 1.0687, 1.0229, 0.9313], q:[0.5344, 0.4885], qb:[0.5802, 0.4427], phi:[0.4885]] | t^2.656 + t^2.794 + 3*t^2.931 + t^3.069 + t^3.206 + t^4.122 + t^4.259 + 2*t^4.397 + 2*t^4.534 + 2*t^4.672 + t^4.809 + t^4.947 + t^5.313 + t^5.45 + 3*t^5.588 + 2*t^5.725 + 5*t^5.863 - t^4.466/y - t^4.466*y | detail | |
50869 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{2}^{2}$ | 0.6972 | 0.8564 | 0.8141 | [M:[0.9194, 1.0, 1.0538, 0.9731, 0.9462, 1.0269], q:[0.5538, 0.5269], qb:[0.4462, 0.5], phi:[0.4933]] | t^2.758 + t^2.839 + t^2.919 + t^2.96 + t^3. + t^3.081 + t^3.161 + t^4.157 + t^4.319 + t^4.399 + 2*t^4.48 + t^4.56 + 2*t^4.641 + t^4.722 + t^4.802 + t^5.516 + t^5.597 + t^5.677 + t^5.718 + t^5.758 + t^5.798 + t^5.839 + t^5.879 + 2*t^5.919 + t^5.96 - t^6. - t^4.48/y - t^4.48*y | detail | |
55353 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}M_{7}$ | 0.7194 | 0.8926 | 0.806 | [M:[0.8127, 0.853, 1.0759, 1.0356, 0.9241, 0.9644, 0.9241], q:[0.6494, 0.5379], qb:[0.4976, 0.4265], phi:[0.4721]] | t^2.438 + t^2.559 + 2*t^2.772 + t^2.833 + t^2.893 + t^3.107 + t^3.975 + t^4.189 + t^4.31 + t^4.402 + t^4.523 + 2*t^4.644 + t^4.857 + t^4.876 + t^4.978 + t^4.997 + t^5.118 + 2*t^5.21 + t^5.271 + t^5.313 + 2*t^5.331 + t^5.392 + t^5.452 + 3*t^5.545 + 2*t^5.605 + 2*t^5.666 + t^5.726 + t^5.879 + t^5.939 - 3*t^6. - t^4.416/y - t^4.416*y | detail | |
55193 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{4}M_{7}$ | 0.7187 | 0.8911 | 0.8065 | [M:[0.8499, 0.8234, 1.0412, 1.0677, 0.9588, 0.9323, 0.9323], q:[0.6295, 0.5206], qb:[0.5471, 0.4117], phi:[0.4728]] | t^2.47 + t^2.55 + 2*t^2.797 + t^2.837 + t^2.876 + t^3.124 + t^3.888 + t^4.215 + t^4.295 + 2*t^4.542 + t^4.621 + t^4.701 + t^4.869 + t^4.94 + t^4.948 + t^5.02 + t^5.099 + t^5.196 + 2*t^5.267 + t^5.307 + 2*t^5.346 + t^5.386 + t^5.426 + 3*t^5.594 + 2*t^5.633 + 2*t^5.673 + t^5.713 + t^5.92 + t^5.96 - 3*t^6. - t^4.418/y - t^4.418*y | detail | |
55105 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{6}M_{7}$ | 0.71 | 0.8746 | 0.8118 | [M:[0.8432, 0.883, 1.0655, 1.0258, 0.9345, 0.9742, 1.0258], q:[0.624, 0.5328], qb:[0.493, 0.4415], phi:[0.4772]] | t^2.53 + t^2.649 + t^2.803 + t^2.863 + 2*t^3.077 + t^3.197 + t^4.081 + t^4.235 + t^4.354 + t^4.39 + t^4.509 + 2*t^4.628 + t^4.783 + t^4.902 + t^5.059 + t^5.176 + t^5.179 + t^5.298 + t^5.333 + t^5.393 + t^5.512 + 2*t^5.607 + t^5.667 + 2*t^5.726 + t^5.881 + 2*t^5.94 - 3*t^6. - t^4.432/y - t^4.432*y | detail | |
55184 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ | 0.709 | 0.8723 | 0.8128 | [M:[0.8619, 0.8671, 1.0478, 1.0426, 0.9522, 0.9574, 1.0452], q:[0.6142, 0.5239], qb:[0.5187, 0.4336], phi:[0.4774]] | t^2.586 + t^2.601 + t^2.857 + t^2.872 + t^3.128 + t^3.135 + t^3.143 + t^4.034 + t^4.289 + t^4.305 + t^4.544 + t^4.56 + 2*t^4.576 + t^4.831 + t^4.846 + t^5.117 + t^5.172 + t^5.187 + t^5.203 + t^5.442 + t^5.458 + t^5.474 + t^5.713 + t^5.721 + t^5.729 + t^5.737 + t^5.745 + t^5.992 - 2*t^6. - t^4.432/y - t^4.432*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46406 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ | 0.7478 | 0.9314 | 0.8029 | [M:[0.7502, 0.889, 1.0, 0.8612, 1.0, 0.7502], q:[0.5555, 0.6943], qb:[0.5555, 0.4445], phi:[0.4375]] | 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. - t^4.313/y - t^4.313*y | detail |