Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55353 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}M_{7}$ | 0.7194 | 0.8926 | 0.806 | [M:[0.8127, 0.853, 1.0759, 1.0356, 0.9241, 0.9644, 0.9241], q:[0.6494, 0.5379], qb:[0.4976, 0.4265], phi:[0.4721]] | [M:[[12, 20], [0, 16], [-8, -8], [4, -4], [8, 8], [-4, 4], [8, 8]], q:[[-8, -16], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[1, 3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$ | ${}$ | -3 | t^2.438 + t^2.559 + 2*t^2.772 + t^2.833 + t^2.893 + t^3.107 + t^3.975 + t^4.189 + t^4.31 + t^4.402 + t^4.523 + 2*t^4.644 + t^4.857 + t^4.876 + t^4.978 + t^4.997 + t^5.118 + 2*t^5.21 + t^5.271 + t^5.313 + 2*t^5.331 + t^5.392 + t^5.452 + 3*t^5.545 + 2*t^5.605 + 2*t^5.666 + t^5.726 + t^5.879 + t^5.939 - 3*t^6. - t^6.121 - 3*t^6.334 + t^6.413 - t^6.455 + t^6.534 + t^6.627 - t^6.669 + 3*t^6.748 + t^6.808 + t^6.84 + 2*t^6.869 + 3*t^6.961 + t^7.022 + 4*t^7.082 + 2*t^7.174 + 2*t^7.203 + t^7.235 + 3*t^7.295 + t^7.314 + 3*t^7.416 + t^7.435 + t^7.477 + t^7.509 + t^7.537 + t^7.556 - t^7.569 + t^7.63 + 2*t^7.648 + t^7.677 + t^7.709 + t^7.751 + 2*t^7.769 - t^7.811 + t^7.83 + 2*t^7.89 + 2*t^7.951 + 3*t^7.983 + t^8.011 - t^8.025 + 2*t^8.043 + 3*t^8.104 + 3*t^8.164 + t^8.225 + 2*t^8.285 + 3*t^8.317 + 4*t^8.377 - t^8.438 - t^8.48 + 3*t^8.498 - 4*t^8.559 + t^8.591 + 2*t^8.62 - t^8.68 + 2*t^8.712 - 8*t^8.772 + t^8.804 - t^8.833 + t^8.851 - 8*t^8.893 + t^8.925 + t^8.954 + t^8.972 - t^8.986 - t^4.416/y - t^6.854/y - t^6.975/y - t^7.189/y - t^7.249/y + t^7.584/y + t^7.644/y + t^7.857/y + t^7.978/y + t^7.997/y + (2*t^8.21)/y + t^8.271/y + (3*t^8.331)/y + t^8.392/y + t^8.452/y + (2*t^8.545)/y + (2*t^8.605)/y + (3*t^8.666)/y + t^8.726/y + (2*t^8.879)/y + t^8.939/y - t^4.416*y - t^6.854*y - t^6.975*y - t^7.189*y - t^7.249*y + t^7.584*y + t^7.644*y + t^7.857*y + t^7.978*y + t^7.997*y + 2*t^8.21*y + t^8.271*y + 3*t^8.331*y + t^8.392*y + t^8.452*y + 2*t^8.545*y + 2*t^8.605*y + 3*t^8.666*y + t^8.726*y + 2*t^8.879*y + t^8.939*y | g1^12*g2^20*t^2.438 + g2^16*t^2.559 + 2*g1^8*g2^8*t^2.772 + g1^2*g2^6*t^2.833 + (g2^4*t^2.893)/g1^4 + (g1^4*t^3.107)/g2^4 + g1*g2^19*t^3.975 + g1^9*g2^11*t^4.189 + (g2^7*t^4.31)/g1^3 + g1^17*g2^3*t^4.402 + (g1^5*t^4.523)/g2 + (2*t^4.644)/(g1^7*g2^5) + (g1*t^4.857)/g2^13 + g1^24*g2^40*t^4.876 + t^4.978/(g1^11*g2^17) + g1^12*g2^36*t^4.997 + g2^32*t^5.118 + 2*g1^20*g2^28*t^5.21 + g1^14*g2^26*t^5.271 + t^5.313/(g1^15*g2^29) + 2*g1^8*g2^24*t^5.331 + g1^2*g2^22*t^5.392 + (g2^20*t^5.452)/g1^4 + 3*g1^16*g2^16*t^5.545 + 2*g1^10*g2^14*t^5.605 + 2*g1^4*g2^12*t^5.666 + (g2^10*t^5.726)/g1^2 + g1^12*g2^4*t^5.879 + g1^6*g2^2*t^5.939 - 3*t^6. - t^6.121/(g1^12*g2^4) - (3*t^6.334)/(g1^4*g2^12) + g1^13*g2^39*t^6.413 - t^6.455/(g1^16*g2^16) + g1*g2^35*t^6.534 + g1^21*g2^31*t^6.627 - t^6.669/(g1^8*g2^24) + 3*g1^9*g2^27*t^6.748 + g1^3*g2^25*t^6.808 + g1^29*g2^23*t^6.84 + (2*g2^23*t^6.869)/g1^3 + 3*g1^17*g2^19*t^6.961 + g1^11*g2^17*t^7.022 + 4*g1^5*g2^15*t^7.082 + 2*g1^25*g2^11*t^7.174 + (2*g2^11*t^7.203)/g1^7 + g1^19*g2^9*t^7.235 + 3*g1^13*g2^7*t^7.295 + g1^36*g2^60*t^7.314 + 3*g1*g2^3*t^7.416 + g1^24*g2^56*t^7.435 + (g2*t^7.477)/g1^5 + (g1^21*t^7.509)/g2 + t^7.537/(g1^11*g2) + g1^12*g2^52*t^7.556 - (g1^15*t^7.569)/g2^3 + (g1^9*t^7.63)/g2^5 + 2*g1^32*g2^48*t^7.648 + g2^48*t^7.677 + g1^26*g2^46*t^7.709 + t^7.751/(g1^3*g2^9) + 2*g1^20*g2^44*t^7.769 - t^7.811/(g1^9*g2^11) + g1^14*g2^42*t^7.83 + 2*g1^8*g2^40*t^7.89 + 2*g1^2*g2^38*t^7.951 + 3*g1^28*g2^36*t^7.983 + (g2^36*t^8.011)/g1^4 - t^8.025/(g1*g2^19) + 2*g1^22*g2^34*t^8.043 + 3*g1^16*g2^32*t^8.104 + 3*g1^10*g2^30*t^8.164 + g1^4*g2^28*t^8.225 + (2*g2^26*t^8.285)/g1^2 + 3*g1^24*g2^24*t^8.317 + 4*g1^18*g2^22*t^8.377 - g1^12*g2^20*t^8.438 - t^8.48/(g1^17*g2^35) + 3*g1^6*g2^18*t^8.498 - 4*g2^16*t^8.559 + g1^26*g2^14*t^8.591 + (2*g2^14*t^8.62)/g1^6 - (g2^12*t^8.68)/g1^12 + 2*g1^14*g2^10*t^8.712 - 8*g1^8*g2^8*t^8.772 + g1^34*g2^6*t^8.804 - g1^2*g2^6*t^8.833 + g1^25*g2^59*t^8.851 - (8*g2^4*t^8.893)/g1^4 + g1^22*g2^2*t^8.925 + (g2^2*t^8.954)/g1^10 + g1^13*g2^55*t^8.972 - g1^16*t^8.986 - (g1*g2^3*t^4.416)/y - (g1^13*g2^23*t^6.854)/y - (g1*g2^19*t^6.975)/y - (g1^9*g2^11*t^7.189)/y - (g1^3*g2^9*t^7.249)/y + t^7.584/(g1*g2^3*y) + t^7.644/(g1^7*g2^5*y) + (g1*t^7.857)/(g2^13*y) + t^7.978/(g1^11*g2^17*y) + (g1^12*g2^36*t^7.997)/y + (2*g1^20*g2^28*t^8.21)/y + (g1^14*g2^26*t^8.271)/y + (3*g1^8*g2^24*t^8.331)/y + (g1^2*g2^22*t^8.392)/y + (g2^20*t^8.452)/(g1^4*y) + (2*g1^16*g2^16*t^8.545)/y + (2*g1^10*g2^14*t^8.605)/y + (3*g1^4*g2^12*t^8.666)/y + (g2^10*t^8.726)/(g1^2*y) + (2*g1^12*g2^4*t^8.879)/y + (g1^6*g2^2*t^8.939)/y - g1*g2^3*t^4.416*y - g1^13*g2^23*t^6.854*y - g1*g2^19*t^6.975*y - g1^9*g2^11*t^7.189*y - g1^3*g2^9*t^7.249*y + (t^7.584*y)/(g1*g2^3) + (t^7.644*y)/(g1^7*g2^5) + (g1*t^7.857*y)/g2^13 + (t^7.978*y)/(g1^11*g2^17) + g1^12*g2^36*t^7.997*y + 2*g1^20*g2^28*t^8.21*y + g1^14*g2^26*t^8.271*y + 3*g1^8*g2^24*t^8.331*y + g1^2*g2^22*t^8.392*y + (g2^20*t^8.452*y)/g1^4 + 2*g1^16*g2^16*t^8.545*y + 2*g1^10*g2^14*t^8.605*y + 3*g1^4*g2^12*t^8.666*y + (g2^10*t^8.726*y)/g1^2 + 2*g1^12*g2^4*t^8.879*y + g1^6*g2^2*t^8.939*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46938 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{4}M_{6}$ | 0.7134 | 0.8806 | 0.8101 | [M:[0.846, 0.8524, 1.0534, 1.0471, 0.9466, 0.9529], q:[0.6272, 0.5267], qb:[0.5203, 0.4262], phi:[0.4749]] | t^2.538 + t^2.557 + t^2.84 + t^2.849 + t^2.859 + t^3.141 + t^3.16 + t^3.982 + t^4.264 + t^4.283 + t^4.547 + t^4.566 + 2*t^4.585 + t^4.867 + t^4.886 + t^5.076 + t^5.095 + t^5.115 + t^5.188 + t^5.378 + t^5.387 + t^5.397 + t^5.407 + t^5.416 + t^5.679 + t^5.689 + 2*t^5.698 + t^5.708 + t^5.718 + t^5.99 - 2*t^6. - t^4.425/y - t^4.425*y | detail |