Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55353 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_4M_6$ + $ M_3M_7$ | 0.7194 | 0.8926 | 0.806 | [X:[], M:[0.8127, 0.853, 1.0759, 1.0356, 0.9241, 0.9644, 0.9241], q:[0.6494, 0.5379], qb:[0.4976, 0.4265], phi:[0.4721]] | [X:[], M:[[12, 20], [0, 16], [-8, -8], [4, -4], [8, 8], [-4, 4], [8, 8]], q:[[-8, -16], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[1, 3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_5$, $ M_7$, $ \phi_1^2$, $ M_6$, $ M_4$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1^2$, $ \phi_1q_1q_2$, $ M_1M_2$, $ M_2^2$, $ M_1M_5$, $ M_1M_7$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ M_2M_5$, $ M_1M_6$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_2M_6$, $ M_1M_4$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_2M_4$, $ M_5M_6$, $ M_6M_7$, $ \phi_1^4$, $ M_6\phi_1^2$, $ M_4M_5$, $ M_4M_7$, $ M_4\phi_1^2$ | . | -3 | t^2.44 + t^2.56 + 2*t^2.77 + t^2.83 + t^2.89 + t^3.11 + t^3.98 + t^4.19 + t^4.31 + t^4.4 + t^4.52 + 2*t^4.64 + t^4.86 + t^4.88 + t^4.98 + t^5. + t^5.12 + 2*t^5.21 + t^5.27 + t^5.31 + 2*t^5.33 + t^5.39 + t^5.45 + 3*t^5.54 + 2*t^5.61 + 2*t^5.67 + t^5.73 + t^5.88 + t^5.94 - 3*t^6. - t^6.12 - 3*t^6.33 + t^6.41 - t^6.46 + t^6.53 + t^6.63 - t^6.67 + 3*t^6.75 + t^6.81 + t^6.84 + 2*t^6.87 + 3*t^6.96 + t^7.02 + 4*t^7.08 + 2*t^7.17 + 2*t^7.2 + t^7.23 + 3*t^7.3 + t^7.31 + 3*t^7.42 + t^7.43 + t^7.48 + t^7.51 + t^7.54 + t^7.56 - t^7.57 + t^7.63 + 2*t^7.65 + t^7.68 + t^7.71 + t^7.75 + 2*t^7.77 - t^7.81 + t^7.83 + 2*t^7.89 + 2*t^7.95 + 3*t^7.98 + t^8.01 - t^8.02 + 2*t^8.04 + 3*t^8.1 + 3*t^8.16 + t^8.22 + 2*t^8.29 + 3*t^8.32 + 4*t^8.38 - t^8.44 - t^8.48 + 3*t^8.5 - 4*t^8.56 + t^8.59 + 2*t^8.62 - t^8.68 + 2*t^8.71 - 8*t^8.77 + t^8.8 - t^8.83 + t^8.85 - 8*t^8.89 + t^8.93 + t^8.95 + t^8.97 - t^8.99 - t^4.42/y - t^6.85/y - t^6.98/y - t^7.19/y - t^7.25/y + t^7.58/y + t^7.64/y + t^7.86/y + t^7.98/y + t^8./y + (2*t^8.21)/y + t^8.27/y + (3*t^8.33)/y + t^8.39/y + t^8.45/y + (2*t^8.54)/y + (2*t^8.61)/y + (3*t^8.67)/y + t^8.73/y + (2*t^8.88)/y + t^8.94/y - t^4.42*y - t^6.85*y - t^6.98*y - t^7.19*y - t^7.25*y + t^7.58*y + t^7.64*y + t^7.86*y + t^7.98*y + t^8.*y + 2*t^8.21*y + t^8.27*y + 3*t^8.33*y + t^8.39*y + t^8.45*y + 2*t^8.54*y + 2*t^8.61*y + 3*t^8.67*y + t^8.73*y + 2*t^8.88*y + t^8.94*y | g1^12*g2^20*t^2.44 + g2^16*t^2.56 + 2*g1^8*g2^8*t^2.77 + g1^2*g2^6*t^2.83 + (g2^4*t^2.89)/g1^4 + (g1^4*t^3.11)/g2^4 + g1*g2^19*t^3.98 + g1^9*g2^11*t^4.19 + (g2^7*t^4.31)/g1^3 + g1^17*g2^3*t^4.4 + (g1^5*t^4.52)/g2 + (2*t^4.64)/(g1^7*g2^5) + (g1*t^4.86)/g2^13 + g1^24*g2^40*t^4.88 + t^4.98/(g1^11*g2^17) + g1^12*g2^36*t^5. + g2^32*t^5.12 + 2*g1^20*g2^28*t^5.21 + g1^14*g2^26*t^5.27 + t^5.31/(g1^15*g2^29) + 2*g1^8*g2^24*t^5.33 + g1^2*g2^22*t^5.39 + (g2^20*t^5.45)/g1^4 + 3*g1^16*g2^16*t^5.54 + 2*g1^10*g2^14*t^5.61 + 2*g1^4*g2^12*t^5.67 + (g2^10*t^5.73)/g1^2 + g1^12*g2^4*t^5.88 + g1^6*g2^2*t^5.94 - 3*t^6. - t^6.12/(g1^12*g2^4) - (3*t^6.33)/(g1^4*g2^12) + g1^13*g2^39*t^6.41 - t^6.46/(g1^16*g2^16) + g1*g2^35*t^6.53 + g1^21*g2^31*t^6.63 - t^6.67/(g1^8*g2^24) + 3*g1^9*g2^27*t^6.75 + g1^3*g2^25*t^6.81 + g1^29*g2^23*t^6.84 + (2*g2^23*t^6.87)/g1^3 + 3*g1^17*g2^19*t^6.96 + g1^11*g2^17*t^7.02 + 4*g1^5*g2^15*t^7.08 + 2*g1^25*g2^11*t^7.17 + (2*g2^11*t^7.2)/g1^7 + g1^19*g2^9*t^7.23 + 3*g1^13*g2^7*t^7.3 + g1^36*g2^60*t^7.31 + 3*g1*g2^3*t^7.42 + g1^24*g2^56*t^7.43 + (g2*t^7.48)/g1^5 + (g1^21*t^7.51)/g2 + t^7.54/(g1^11*g2) + g1^12*g2^52*t^7.56 - (g1^15*t^7.57)/g2^3 + (g1^9*t^7.63)/g2^5 + 2*g1^32*g2^48*t^7.65 + g2^48*t^7.68 + g1^26*g2^46*t^7.71 + t^7.75/(g1^3*g2^9) + 2*g1^20*g2^44*t^7.77 - t^7.81/(g1^9*g2^11) + g1^14*g2^42*t^7.83 + 2*g1^8*g2^40*t^7.89 + 2*g1^2*g2^38*t^7.95 + 3*g1^28*g2^36*t^7.98 + (g2^36*t^8.01)/g1^4 - t^8.02/(g1*g2^19) + 2*g1^22*g2^34*t^8.04 + 3*g1^16*g2^32*t^8.1 + 3*g1^10*g2^30*t^8.16 + g1^4*g2^28*t^8.22 + (2*g2^26*t^8.29)/g1^2 + 3*g1^24*g2^24*t^8.32 + 4*g1^18*g2^22*t^8.38 - g1^12*g2^20*t^8.44 - t^8.48/(g1^17*g2^35) + 3*g1^6*g2^18*t^8.5 - 4*g2^16*t^8.56 + g1^26*g2^14*t^8.59 + (2*g2^14*t^8.62)/g1^6 - (g2^12*t^8.68)/g1^12 + 2*g1^14*g2^10*t^8.71 - 8*g1^8*g2^8*t^8.77 + g1^34*g2^6*t^8.8 - g1^2*g2^6*t^8.83 + g1^25*g2^59*t^8.85 - (8*g2^4*t^8.89)/g1^4 + g1^22*g2^2*t^8.93 + (g2^2*t^8.95)/g1^10 + g1^13*g2^55*t^8.97 - g1^16*t^8.99 - (g1*g2^3*t^4.42)/y - (g1^13*g2^23*t^6.85)/y - (g1*g2^19*t^6.98)/y - (g1^9*g2^11*t^7.19)/y - (g1^3*g2^9*t^7.25)/y + t^7.58/(g1*g2^3*y) + t^7.64/(g1^7*g2^5*y) + (g1*t^7.86)/(g2^13*y) + t^7.98/(g1^11*g2^17*y) + (g1^12*g2^36*t^8.)/y + (2*g1^20*g2^28*t^8.21)/y + (g1^14*g2^26*t^8.27)/y + (3*g1^8*g2^24*t^8.33)/y + (g1^2*g2^22*t^8.39)/y + (g2^20*t^8.45)/(g1^4*y) + (2*g1^16*g2^16*t^8.54)/y + (2*g1^10*g2^14*t^8.61)/y + (3*g1^4*g2^12*t^8.67)/y + (g2^10*t^8.73)/(g1^2*y) + (2*g1^12*g2^4*t^8.88)/y + (g1^6*g2^2*t^8.94)/y - g1*g2^3*t^4.42*y - g1^13*g2^23*t^6.85*y - g1*g2^19*t^6.98*y - g1^9*g2^11*t^7.19*y - g1^3*g2^9*t^7.25*y + (t^7.58*y)/(g1*g2^3) + (t^7.64*y)/(g1^7*g2^5) + (g1*t^7.86*y)/g2^13 + (t^7.98*y)/(g1^11*g2^17) + g1^12*g2^36*t^8.*y + 2*g1^20*g2^28*t^8.21*y + g1^14*g2^26*t^8.27*y + 3*g1^8*g2^24*t^8.33*y + g1^2*g2^22*t^8.39*y + (g2^20*t^8.45*y)/g1^4 + 2*g1^16*g2^16*t^8.54*y + 2*g1^10*g2^14*t^8.61*y + 3*g1^4*g2^12*t^8.67*y + (g2^10*t^8.73*y)/g1^2 + 2*g1^12*g2^4*t^8.88*y + g1^6*g2^2*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46938 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_4M_6$ | 0.7134 | 0.8806 | 0.8101 | [X:[], M:[0.846, 0.8524, 1.0534, 1.0471, 0.9466, 0.9529], q:[0.6272, 0.5267], qb:[0.5203, 0.4262], phi:[0.4749]] | t^2.54 + t^2.56 + t^2.84 + t^2.85 + t^2.86 + t^3.14 + t^3.16 + t^3.98 + t^4.26 + t^4.28 + t^4.55 + t^4.57 + 2*t^4.58 + t^4.87 + t^4.89 + t^5.08 + t^5.1 + t^5.11 + t^5.19 + t^5.38 + t^5.39 + t^5.4 + t^5.41 + t^5.42 + t^5.68 + t^5.69 + 2*t^5.7 + t^5.71 + t^5.72 + t^5.99 - 2*t^6. - t^4.42/y - t^4.42*y | detail |