Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55193 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_4M_6$ + $ M_4M_7$ | 0.7187 | 0.8911 | 0.8065 | [X:[], M:[0.8499, 0.8234, 1.0412, 1.0677, 0.9588, 0.9323, 0.9323], q:[0.6295, 0.5206], qb:[0.5471, 0.4117], phi:[0.4728]] | [X:[], M:[[12, 20], [0, 16], [-8, -8], [4, -4], [8, 8], [-4, 4], [-4, 4]], q:[[-8, -16], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[1, 3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ M_6$, $ M_7$, $ \phi_1^2$, $ M_5$, $ M_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ M_2^2$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_1^2$, $ M_2M_6$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_2M_5$, $ M_1M_6$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_1M_5$, $ M_2M_3$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ M_6\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_3$, $ M_5M_6$, $ M_5M_7$, $ \phi_1^4$, $ M_5\phi_1^2$, $ M_3M_6$, $ M_3M_7$, $ M_3\phi_1^2$ | . | -3 | t^2.47 + t^2.55 + 2*t^2.8 + t^2.84 + t^2.88 + t^3.12 + t^3.89 + t^4.22 + t^4.29 + 2*t^4.54 + t^4.62 + t^4.7 + t^4.87 + t^4.94 + t^4.95 + t^5.02 + t^5.1 + t^5.2 + 2*t^5.27 + t^5.31 + 2*t^5.35 + t^5.39 + t^5.43 + 3*t^5.59 + 2*t^5.63 + 2*t^5.67 + t^5.71 + t^5.92 + t^5.96 - 3*t^6. - t^6.08 - 3*t^6.33 + t^6.36 - t^6.41 + t^6.44 - t^6.65 + 3*t^6.69 + t^6.72 + 2*t^6.76 + t^6.84 + 4*t^7.01 + 3*t^7.09 + t^7.13 + 2*t^7.17 + t^7.25 + 4*t^7.34 + t^7.38 + t^7.41 + 2*t^7.42 + t^7.49 + 2*t^7.5 + t^7.54 + t^7.57 + t^7.58 + t^7.65 + 3*t^7.67 - t^7.71 + 2*t^7.74 + 2*t^7.78 + 2*t^7.82 + 2*t^7.9 + t^7.94 + t^7.98 + 2*t^7.99 + 3*t^8.06 - t^8.07 + 3*t^8.1 - t^8.11 + 2*t^8.14 - t^8.15 + 3*t^8.18 + 2*t^8.22 + t^8.26 + t^8.32 - t^8.36 + 3*t^8.39 - t^8.4 + 5*t^8.43 - 2*t^8.47 + 3*t^8.51 - 3*t^8.55 + t^8.59 - t^8.63 + t^8.72 + 3*t^8.76 - 9*t^8.8 + t^8.83 - t^8.84 - 7*t^8.88 + t^8.91 - 2*t^8.96 + t^8.99 - t^4.42/y - t^6.89/y - t^6.97/y - t^7.22/y - t^7.25/y + t^7.58/y + t^7.62/y + t^7.87/y + t^7.95/y + t^8.02/y + (2*t^8.27)/y + t^8.31/y + (3*t^8.35)/y + t^8.39/y + t^8.43/y + (2*t^8.59)/y + (2*t^8.63)/y + (3*t^8.67)/y + t^8.71/y + (2*t^8.92)/y + t^8.96/y - t^4.42*y - t^6.89*y - t^6.97*y - t^7.22*y - t^7.25*y + t^7.58*y + t^7.62*y + t^7.87*y + t^7.95*y + t^8.02*y + 2*t^8.27*y + t^8.31*y + 3*t^8.35*y + t^8.39*y + t^8.43*y + 2*t^8.59*y + 2*t^8.63*y + 3*t^8.67*y + t^8.71*y + 2*t^8.92*y + t^8.96*y | g2^16*t^2.47 + g1^12*g2^20*t^2.55 + (2*g2^4*t^2.8)/g1^4 + g1^2*g2^6*t^2.84 + g1^8*g2^8*t^2.88 + t^3.12/(g1^8*g2^8) + g1*g2^19*t^3.89 + (g2^7*t^4.22)/g1^3 + g1^9*g2^11*t^4.29 + (2*t^4.54)/(g1^7*g2^5) + (g1^5*t^4.62)/g2 + g1^17*g2^3*t^4.7 + t^4.87/(g1^11*g2^17) + g2^32*t^4.94 + (g1*t^4.95)/g2^13 + g1^12*g2^36*t^5.02 + g1^24*g2^40*t^5.1 + t^5.2/(g1^15*g2^29) + (2*g2^20*t^5.27)/g1^4 + g1^2*g2^22*t^5.31 + 2*g1^8*g2^24*t^5.35 + g1^14*g2^26*t^5.39 + g1^20*g2^28*t^5.43 + (3*g2^8*t^5.59)/g1^8 + (2*g2^10*t^5.63)/g1^2 + 2*g1^4*g2^12*t^5.67 + g1^10*g2^14*t^5.71 + t^5.92/(g1^12*g2^4) + t^5.96/(g1^6*g2^2) - 3*t^6. - g1^12*g2^4*t^6.08 - (3*t^6.33)/(g1^4*g2^12) + g1*g2^35*t^6.36 - (g1^8*t^6.41)/g2^8 + g1^13*g2^39*t^6.44 - t^6.65/(g1^8*g2^24) + (3*g2^23*t^6.69)/g1^3 + g1^3*g2^25*t^6.72 + 2*g1^9*g2^27*t^6.76 + g1^21*g2^31*t^6.84 + (4*g2^11*t^7.01)/g1^7 + 3*g1^5*g2^15*t^7.09 + g1^11*g2^17*t^7.13 + 2*g1^17*g2^19*t^7.17 + g1^29*g2^23*t^7.25 + (4*t^7.34)/(g1^11*g2) + (g2*t^7.38)/g1^5 + g2^48*t^7.41 + 2*g1*g2^3*t^7.42 + g1^12*g2^52*t^7.49 + 2*g1^13*g2^7*t^7.5 + g1^19*g2^9*t^7.54 + g1^24*g2^56*t^7.57 + g1^25*g2^11*t^7.58 + g1^36*g2^60*t^7.65 + (3*t^7.67)/(g1^15*g2^13) - t^7.71/(g1^9*g2^11) + (2*g2^36*t^7.74)/g1^4 + 2*g1^2*g2^38*t^7.78 + 2*g1^8*g2^40*t^7.82 - (g1^15*t^7.86)/g2^3 + g1^14*g2^42*t^7.86 + 2*g1^20*g2^44*t^7.9 + g1^26*g2^46*t^7.94 + g1^32*g2^48*t^7.98 + (2*t^7.99)/(g1^19*g2^25) + (3*g2^24*t^8.06)/g1^8 - t^8.07/(g1^7*g2^21) + (3*g2^26*t^8.1)/g1^2 - t^8.11/(g1*g2^19) + 2*g1^4*g2^28*t^8.14 - (g1^5*t^8.15)/g2^17 + 3*g1^10*g2^30*t^8.18 + 2*g1^16*g2^32*t^8.22 + g1^22*g2^34*t^8.26 + t^8.32/(g1^23*g2^37) - t^8.36/(g1^17*g2^35) + (3*g2^12*t^8.39)/g1^12 - t^8.4/(g1^11*g2^33) + (5*g2^14*t^8.43)/g1^6 - 2*g2^16*t^8.47 + 3*g1^6*g2^18*t^8.51 - 3*g1^12*g2^20*t^8.55 + g1^18*g2^22*t^8.59 - g1^24*g2^24*t^8.63 + t^8.72/g1^16 + (3*g2^2*t^8.76)/g1^10 - (9*g2^4*t^8.8)/g1^4 + g1*g2^51*t^8.83 - g1^2*g2^6*t^8.84 - 7*g1^8*g2^8*t^8.88 + g1^13*g2^55*t^8.91 - 2*g1^20*g2^12*t^8.96 + g1^25*g2^59*t^8.99 - (g1*g2^3*t^4.42)/y - (g1*g2^19*t^6.89)/y - (g1^13*g2^23*t^6.97)/y - (g2^7*t^7.22)/(g1^3*y) - (g1^3*g2^9*t^7.25)/y + t^7.58/(g1*g2^3*y) + (g1^5*t^7.62)/(g2*y) + t^7.87/(g1^11*g2^17*y) + (g1*t^7.95)/(g2^13*y) + (g1^12*g2^36*t^8.02)/y + (2*g2^20*t^8.27)/(g1^4*y) + (g1^2*g2^22*t^8.31)/y + (3*g1^8*g2^24*t^8.35)/y + (g1^14*g2^26*t^8.39)/y + (g1^20*g2^28*t^8.43)/y + (2*g2^8*t^8.59)/(g1^8*y) + (2*g2^10*t^8.63)/(g1^2*y) + (3*g1^4*g2^12*t^8.67)/y + (g1^10*g2^14*t^8.71)/y + (2*t^8.92)/(g1^12*g2^4*y) + t^8.96/(g1^6*g2^2*y) - g1*g2^3*t^4.42*y - g1*g2^19*t^6.89*y - g1^13*g2^23*t^6.97*y - (g2^7*t^7.22*y)/g1^3 - g1^3*g2^9*t^7.25*y + (t^7.58*y)/(g1*g2^3) + (g1^5*t^7.62*y)/g2 + (t^7.87*y)/(g1^11*g2^17) + (g1*t^7.95*y)/g2^13 + g1^12*g2^36*t^8.02*y + (2*g2^20*t^8.27*y)/g1^4 + g1^2*g2^22*t^8.31*y + 3*g1^8*g2^24*t^8.35*y + g1^14*g2^26*t^8.39*y + g1^20*g2^28*t^8.43*y + (2*g2^8*t^8.59*y)/g1^8 + (2*g2^10*t^8.63*y)/g1^2 + 3*g1^4*g2^12*t^8.67*y + g1^10*g2^14*t^8.71*y + (2*t^8.92*y)/(g1^12*g2^4) + (t^8.96*y)/(g1^6*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46938 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_4M_6$ | 0.7134 | 0.8806 | 0.8101 | [X:[], M:[0.846, 0.8524, 1.0534, 1.0471, 0.9466, 0.9529], q:[0.6272, 0.5267], qb:[0.5203, 0.4262], phi:[0.4749]] | t^2.54 + t^2.56 + t^2.84 + t^2.85 + t^2.86 + t^3.14 + t^3.16 + t^3.98 + t^4.26 + t^4.28 + t^4.55 + t^4.57 + 2*t^4.58 + t^4.87 + t^4.89 + t^5.08 + t^5.1 + t^5.11 + t^5.19 + t^5.38 + t^5.39 + t^5.4 + t^5.41 + t^5.42 + t^5.68 + t^5.69 + 2*t^5.7 + t^5.71 + t^5.72 + t^5.99 - 2*t^6. - t^4.42/y - t^4.42*y | detail |