Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1564 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.6793 | 0.8474 | 0.8016 | [M:[1.0148, 0.788, 0.9715, 0.8313, 1.1687, 1.0285, 0.7613], q:[0.5912, 0.394], qb:[0.4373, 0.7746], phi:[0.4507]] | [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [1, 15], [2, 6]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{6}\phi_{1}^{2}$ | ${}$ | -2 | t^2.284 + t^2.364 + t^2.494 + t^2.704 + t^3.044 + t^3.086 + t^3.506 + t^3.846 + t^3.976 + t^4.097 + t^4.308 + t^4.438 + t^4.568 + t^4.648 + t^4.728 + t^4.778 + t^4.858 + t^4.899 + 2*t^4.988 + t^5.068 + t^5.198 + t^5.328 + t^5.369 + t^5.408 + t^5.45 + t^5.58 + t^5.749 + 2*t^5.79 - 2*t^6. + t^6.089 + t^6.13 + t^6.171 + t^6.21 + t^6.26 + t^6.34 + t^6.381 + t^6.47 + t^6.55 + t^6.592 + t^6.672 + t^6.68 + t^6.721 - t^6.761 + t^6.802 + t^6.851 + 2*t^6.932 + t^7.012 + t^7.021 + 2*t^7.062 + t^7.092 + t^7.142 + 2*t^7.183 + t^7.263 + t^7.272 + t^7.352 + t^7.393 + t^7.432 + 2*t^7.482 + t^7.523 + t^7.562 + t^7.603 + t^7.612 + t^7.653 + 2*t^7.692 + t^7.773 + t^7.822 + t^7.863 + t^7.944 + t^7.952 + t^7.985 + t^8.032 + 3*t^8.074 + t^8.113 - t^8.284 - 3*t^8.364 + t^8.373 + t^8.405 + 2*t^8.414 + 2*t^8.453 + t^8.455 - t^8.494 + t^8.535 + t^8.544 + 2*t^8.665 - 2*t^8.704 + t^8.754 + t^8.793 + 2*t^8.834 + 3*t^8.875 - t^8.956 + 2*t^8.964 + t^8.997 - t^4.352/y - t^6.636/y - t^6.716/y - t^7.056/y + t^7.308/y - t^7.397/y + (2*t^7.648)/y + t^7.778/y + t^7.858/y + (2*t^7.988)/y + (2*t^8.068)/y + t^8.198/y + t^8.328/y + t^8.369/y + t^8.408/y + t^8.45/y + t^8.538/y + t^8.58/y + t^8.749/y + (2*t^8.79)/y + t^8.87/y - t^8.92/y - t^4.352*y - t^6.636*y - t^6.716*y - t^7.056*y + t^7.308*y - t^7.397*y + 2*t^7.648*y + t^7.778*y + t^7.858*y + 2*t^7.988*y + 2*t^8.068*y + t^8.198*y + t^8.328*y + t^8.369*y + t^8.408*y + t^8.45*y + t^8.538*y + t^8.58*y + t^8.749*y + 2*t^8.79*y + t^8.87*y - t^8.92*y | g1^2*g2^6*t^2.284 + t^2.364/(g1^2*g2^2) + (g1*t^2.494)/g2 + t^2.704/g2^8 + (g1^2*t^3.044)/g2^14 + g1*g2^15*t^3.086 + (g2*t^3.506)/g1 + (g1*t^3.846)/g2^5 + (g1^4*t^3.976)/g2^4 + (g2^17*t^4.097)/g1 + (g2^10*t^4.308)/g1^2 + g1*g2^11*t^4.438 + g1^4*g2^12*t^4.568 + g2^4*t^4.648 + t^4.728/(g1^4*g2^4) + g1^3*g2^5*t^4.778 + t^4.858/(g1*g2^3) + (g2^26*t^4.899)/g1^2 + (2*g1^2*t^4.988)/g2^2 + t^5.068/(g1^2*g2^10) + (g1*t^5.198)/g2^9 + (g1^4*t^5.328)/g2^8 + g1^3*g2^21*t^5.369 + t^5.408/g2^16 + (g2^13*t^5.45)/g1 + g1^2*g2^14*t^5.58 + (g1^2*t^5.749)/g2^22 + 2*g1*g2^7*t^5.79 - 2*t^6. + (g1^4*t^6.089)/g2^28 + g1^3*g2*t^6.13 + g1^2*g2^30*t^6.171 + t^6.21/(g1*g2^7) + g1^6*g2^2*t^6.26 + (g1^2*t^6.34)/g2^6 + g1*g2^23*t^6.381 + (g1^5*t^6.47)/g2^5 + (g1*t^6.55)/g2^13 + g2^16*t^6.592 + (g2^8*t^6.672)/g1^4 + (g1^4*t^6.68)/g2^12 + g1^3*g2^17*t^6.721 - t^6.761/g2^20 + (g2^9*t^6.802)/g1 + g1^6*g2^18*t^6.851 + 2*g1^2*g2^10*t^6.932 + (g2^2*t^7.012)/g1^2 + (g1^6*t^7.021)/g2^18 + 2*g1^5*g2^11*t^7.062 + t^7.092/(g1^6*g2^6) + g1*g2^3*t^7.142 + 2*g2^32*t^7.183 + (g2^24*t^7.263)/g1^4 + g1^4*g2^4*t^7.272 + t^7.352/g2^4 + (g2^25*t^7.393)/g1 + t^7.432/(g1^4*g2^12) + (2*g1^3*t^7.482)/g2^3 + g1^2*g2^26*t^7.523 + t^7.562/(g1*g2^11) + (g2^18*t^7.603)/g1^2 + (g1^6*t^7.612)/g2^2 + g1^5*g2^27*t^7.653 + (2*g1^2*t^7.692)/g2^10 + t^7.773/(g1^2*g2^18) + (g1^5*t^7.822)/g2^9 + g1^4*g2^20*t^7.863 + g2^12*t^7.944 + (g1^8*t^7.952)/g2^8 + (g2^41*t^7.985)/g1 + (g1^4*t^8.032)/g2^16 + 3*g1^3*g2^13*t^8.074 + t^8.113/g2^24 - g1^2*g2^6*t^8.284 - (3*t^8.364)/(g1^2*g2^2) + (g1^6*t^8.373)/g2^22 + (g2^27*t^8.405)/g1^3 + 2*g1^5*g2^7*t^8.414 + (2*g1^2*t^8.453)/g2^30 + g1^4*g2^36*t^8.455 - (g1*t^8.494)/g2 + g2^28*t^8.535 + g1^8*g2^8*t^8.544 + 2*g1^3*g2^29*t^8.665 - (2*t^8.704)/g2^8 + g1^7*g2*t^8.754 + (g1^4*t^8.793)/g2^36 + (2*g1^3*t^8.834)/g2^7 + 3*g1^2*g2^22*t^8.875 - (g2^14*t^8.956)/g1^2 + (2*g1^6*t^8.964)/g2^6 + (g2^43*t^8.997)/g1^3 - t^4.352/(g2^4*y) - (g1^2*g2^2*t^6.636)/y - t^6.716/(g1^2*g2^6*y) - t^7.056/(g2^12*y) + (g2^10*t^7.308)/(g1^2*y) - (g1^2*t^7.397)/(g2^18*y) + (2*g2^4*t^7.648)/y + (g1^3*g2^5*t^7.778)/y + t^7.858/(g1*g2^3*y) + (2*g1^2*t^7.988)/(g2^2*y) + (2*t^8.068)/(g1^2*g2^10*y) + (g1*t^8.198)/(g2^9*y) + (g1^4*t^8.328)/(g2^8*y) + (g1^3*g2^21*t^8.369)/y + t^8.408/(g2^16*y) + (g2^13*t^8.45)/(g1*y) + (g1^3*t^8.538)/(g2^15*y) + (g1^2*g2^14*t^8.58)/y + (g1^2*t^8.749)/(g2^22*y) + (2*g1*g2^7*t^8.79)/y + t^8.87/(g1^3*g2*y) - (g1^4*g2^8*t^8.92)/y - (t^4.352*y)/g2^4 - g1^2*g2^2*t^6.636*y - (t^6.716*y)/(g1^2*g2^6) - (t^7.056*y)/g2^12 + (g2^10*t^7.308*y)/g1^2 - (g1^2*t^7.397*y)/g2^18 + 2*g2^4*t^7.648*y + g1^3*g2^5*t^7.778*y + (t^7.858*y)/(g1*g2^3) + (2*g1^2*t^7.988*y)/g2^2 + (2*t^8.068*y)/(g1^2*g2^10) + (g1*t^8.198*y)/g2^9 + (g1^4*t^8.328*y)/g2^8 + g1^3*g2^21*t^8.369*y + (t^8.408*y)/g2^16 + (g2^13*t^8.45*y)/g1 + (g1^3*t^8.538*y)/g2^15 + g1^2*g2^14*t^8.58*y + (g1^2*t^8.749*y)/g2^22 + 2*g1*g2^7*t^8.79*y + (t^8.87*y)/(g1^3*g2) - g1^4*g2^8*t^8.92*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
988 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}M_{6}$ | 0.6613 | 0.8142 | 0.8122 | [M:[1.0162, 0.7677, 0.9447, 0.8391, 1.1609, 1.0553], q:[0.6, 0.3838], qb:[0.4553, 0.777], phi:[0.446]] | t^2.303 + t^2.517 + t^2.676 + t^3.048 + t^3.166 + t^3.483 + t^3.641 + t^3.855 + t^4.07 + t^4.131 + t^4.289 + t^4.504 + t^4.606 + t^4.82 + t^4.938 + t^4.979 + t^5.035 + t^5.193 + t^5.352 + t^5.469 + t^5.683 + t^5.724 + t^5.842 + t^5.944 - 2*t^6. - t^4.338/y - t^4.338*y | detail |