Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
608 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ | 0.7171 | 0.8807 | 0.8142 | [M:[0.9214, 0.9214, 0.9214, 0.9214, 1.0786, 0.9214], q:[0.6179, 0.4607], qb:[0.4607, 0.6179], phi:[0.4607]] | [M:[[4, 6, 1], [0, -2, -1], [6, 4, 1], [-2, 0, -1], [-2, -2, 0], [2, 2, 0]], q:[[-6, -6, -1], [2, 0, 0]], qb:[[0, 2, 0], [0, 0, 1]], phi:[[1, 1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$ | ${}$ | -8 | 6*t^2.764 + t^3.707 + 3*t^4.146 + 4*t^4.618 + 3*t^5.09 + 17*t^5.528 - 8*t^6. + t^6.472 + 14*t^6.91 + 10*t^7.382 + t^7.415 + 6*t^7.854 + 40*t^8.293 - 3*t^8.325 - 33*t^8.764 + 3*t^8.797 - t^4.382/y - (5*t^7.146)/y + (5*t^7.618)/y + (15*t^8.528)/y - t^4.382*y - 5*t^7.146*y + 5*t^7.618*y + 15*t^8.528*y | 2*g1^2*g2^2*t^2.764 + t^2.764/(g1^2*g3) + t^2.764/(g2^2*g3) + g1^6*g2^4*g3*t^2.764 + g1^4*g2^6*g3*t^2.764 + t^3.707/(g1^6*g2^6) + g1^5*g2*t^4.146 + g1^3*g2^3*t^4.146 + g1*g2^5*t^4.146 + t^4.618/(g1^3*g2^5*g3) + t^4.618/(g1^5*g2^3*g3) + g1^3*g2*g3*t^4.618 + g1*g2^3*g3*t^4.618 + t^5.09/(g1^5*g2^5) + t^5.09/(g1^11*g2^11*g3^2) + g1*g2*g3^2*t^5.09 + g1^6*g2^2*t^5.528 + 5*g1^4*g2^4*t^5.528 + g1^2*g2^6*t^5.528 + t^5.528/(g1^4*g3^2) + t^5.528/(g2^4*g3^2) + t^5.528/(g1^2*g2^2*g3^2) + (g1^2*t^5.528)/g3 + (g2^2*t^5.528)/g3 + g1^8*g2^6*g3*t^5.528 + g1^6*g2^8*g3*t^5.528 + g1^12*g2^8*g3^2*t^5.528 + g1^10*g2^10*g3^2*t^5.528 + g1^8*g2^12*g3^2*t^5.528 - 4*t^6. - (g1^2*t^6.)/g2^2 - (g2^2*t^6.)/g1^2 - t^6./(g1^6*g2^6*g3^2) - g1^6*g2^6*g3^2*t^6. + t^6.472/(g1^4*g2^4) + 2*g1^7*g2^3*t^6.91 + 2*g1^5*g2^5*t^6.91 + 2*g1^3*g2^7*t^6.91 + (g1^5*t^6.91)/(g2*g3) + (g1^3*g2*t^6.91)/g3 + (g1*g2^3*t^6.91)/g3 + (g2^5*t^6.91)/(g1*g3) + g1^11*g2^5*g3*t^6.91 + g1^9*g2^7*g3*t^6.91 + g1^7*g2^9*g3*t^6.91 + g1^5*g2^11*g3*t^6.91 + t^7.382/(g1^3*g2^7*g3^2) + t^7.382/(g1^5*g2^5*g3^2) + t^7.382/(g1^7*g2^3*g3^2) + t^7.382/(g1*g2^3*g3) + t^7.382/(g1^3*g2*g3) + g1^5*g2^3*g3*t^7.382 + g1^3*g2^5*g3*t^7.382 + g1^9*g2^5*g3^2*t^7.382 + g1^7*g2^7*g3^2*t^7.382 + g1^5*g2^9*g3^2*t^7.382 + t^7.415/(g1^12*g2^12) + t^7.854/(g1^11*g2^13*g3^3) + t^7.854/(g1^13*g2^11*g3^3) + t^7.854/(g1^9*g2^9*g3^2) + g1^3*g2^3*g3^2*t^7.854 + g1^7*g2^5*g3^3*t^7.854 + g1^5*g2^7*g3^3*t^7.854 + g1^10*g2^2*t^8.293 + g1^8*g2^4*t^8.293 + 6*g1^6*g2^6*t^8.293 + g1^4*g2^8*t^8.293 + g1^2*g2^10*t^8.293 + t^8.293/(g1^6*g3^3) + t^8.293/(g2^6*g3^3) + t^8.293/(g1^2*g2^4*g3^3) + t^8.293/(g1^4*g2^2*g3^3) + t^8.293/g3^2 + (g1^2*t^8.293)/(g2^2*g3^2) + (g2^2*t^8.293)/(g1^2*g3^2) + (g1^6*t^8.293)/g3 + (3*g1^4*g2^2*t^8.293)/g3 + (3*g1^2*g2^4*t^8.293)/g3 + (g2^6*t^8.293)/g3 + g1^12*g2^6*g3*t^8.293 + 3*g1^10*g2^8*g3*t^8.293 + 3*g1^8*g2^10*g3*t^8.293 + g1^6*g2^12*g3*t^8.293 + g1^14*g2^10*g3^2*t^8.293 + g1^12*g2^12*g3^2*t^8.293 + g1^10*g2^14*g3^2*t^8.293 + g1^18*g2^12*g3^3*t^8.293 + g1^16*g2^14*g3^3*t^8.293 + g1^14*g2^16*g3^3*t^8.293 + g1^12*g2^18*g3^3*t^8.293 - t^8.325/(g1^7*g2^7) - t^8.325/(g1^13*g2^13*g3^2) - (g3^2*t^8.325)/(g1*g2) - 2*g1^4*t^8.764 - 7*g1^2*g2^2*t^8.764 - 2*g2^4*t^8.764 - t^8.764/(g1^6*g2^8*g3^3) - t^8.764/(g1^8*g2^6*g3^3) - t^8.764/(g1^4*g2^4*g3^2) - (4*t^8.764)/(g1^2*g3) - (4*t^8.764)/(g2^2*g3) - 4*g1^6*g2^4*g3*t^8.764 - 4*g1^4*g2^6*g3*t^8.764 - g1^8*g2^8*g3^2*t^8.764 - g1^12*g2^10*g3^3*t^8.764 - g1^10*g2^12*g3^3*t^8.764 + t^8.797/(g1^11*g2^11) + t^8.797/(g1^17*g2^17*g3^2) + (g3^2*t^8.797)/(g1^5*g2^5) - (g1*g2*t^4.382)/y - (g1^3*g2^3*t^7.146)/y - (g1*t^7.146)/(g2*g3*y) - (g2*t^7.146)/(g1*g3*y) - (g1^7*g2^5*g3*t^7.146)/y - (g1^5*g2^7*g3*t^7.146)/y + t^7.618/(g1*g2*y) + t^7.618/(g1^3*g2^5*g3*y) + t^7.618/(g1^5*g2^3*g3*y) + (g1^3*g2*g3*t^7.618)/y + (g1*g2^3*g3*t^7.618)/y + (g1^6*g2^2*t^8.528)/y + (3*g1^4*g2^4*t^8.528)/y + (g1^2*g2^6*t^8.528)/y + t^8.528/(g1^2*g2^2*g3^2*y) + (2*g1^2*t^8.528)/(g3*y) + (2*g2^2*t^8.528)/(g3*y) + (2*g1^8*g2^6*g3*t^8.528)/y + (2*g1^6*g2^8*g3*t^8.528)/y + (g1^10*g2^10*g3^2*t^8.528)/y - g1*g2*t^4.382*y - g1^3*g2^3*t^7.146*y - (g1*t^7.146*y)/(g2*g3) - (g2*t^7.146*y)/(g1*g3) - g1^7*g2^5*g3*t^7.146*y - g1^5*g2^7*g3*t^7.146*y + (t^7.618*y)/(g1*g2) + (t^7.618*y)/(g1^3*g2^5*g3) + (t^7.618*y)/(g1^5*g2^3*g3) + g1^3*g2*g3*t^7.618*y + g1*g2^3*g3*t^7.618*y + g1^6*g2^2*t^8.528*y + 3*g1^4*g2^4*t^8.528*y + g1^2*g2^6*t^8.528*y + (t^8.528*y)/(g1^2*g2^2*g3^2) + (2*g1^2*t^8.528*y)/g3 + (2*g2^2*t^8.528*y)/g3 + 2*g1^8*g2^6*g3*t^8.528*y + 2*g1^6*g2^8*g3*t^8.528*y + g1^10*g2^10*g3^2*t^8.528*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
1951 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ | 0.663 | 0.838 | 0.7912 | [M:[0.8, 0.8, 0.8, 0.8, 1.2, 0.8], q:[0.8, 0.4], qb:[0.4, 0.8], phi:[0.4]] | 6*t^2.4 + 3*t^3.6 + 22*t^4.8 + 9*t^6. - t^4.2/y - t^4.2*y | detail | {a: 663/1000, c: 419/500, M1: 4/5, M2: 4/5, M3: 4/5, M4: 4/5, M5: 6/5, M6: 4/5, q1: 4/5, q2: 2/5, qb1: 2/5, qb2: 4/5, phi1: 2/5} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
372 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ | 0.7103 | 0.8687 | 0.8177 | [M:[0.9326, 0.9326, 0.9326, 0.9326, 1.0674], q:[0.6011, 0.4663], qb:[0.4663, 0.6011], phi:[0.4663]] | 5*t^2.798 + t^3.202 + t^3.606 + 3*t^4.197 + 4*t^4.601 + 3*t^5.005 + 11*t^5.596 - 3*t^6. - t^4.399/y - t^4.399*y | detail |