Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
608 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5\phi_1^2$ + $ M_5M_6$ 0.7171 0.8807 0.8142 [X:[], M:[0.9214, 0.9214, 0.9214, 0.9214, 1.0786, 0.9214], q:[0.6179, 0.4607], qb:[0.4607, 0.6179], phi:[0.4607]] [X:[], M:[[4, 6, 1], [0, -2, -1], [6, 4, 1], [-2, 0, -1], [-2, -2, 0], [2, 2, 0]], q:[[-6, -6, -1], [2, 0, 0]], qb:[[0, 2, 0], [0, 0, 1]], phi:[[1, 1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ \phi_1^2$, $ M_4$, $ M_2$, $ M_3$, $ M_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_1M_2$, $ M_3M_4$, $ M_6^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4^2$, $ M_2^2$, $ M_2M_4$, $ M_2M_6$, $ M_2\phi_1^2$, $ M_4M_6$, $ M_4\phi_1^2$, $ M_3M_6$, $ M_3\phi_1^2$, $ M_1M_6$, $ M_1\phi_1^2$, $ M_3^2$, $ M_1M_3$, $ M_1^2$ . -8 6*t^2.76 + t^3.71 + 3*t^4.15 + 4*t^4.62 + 3*t^5.09 + 17*t^5.53 - 8*t^6. + t^6.47 + 14*t^6.91 + 10*t^7.38 + t^7.41 + 6*t^7.85 + 40*t^8.29 - 3*t^8.33 - 33*t^8.76 + 3*t^8.8 - t^4.38/y - (5*t^7.15)/y + (5*t^7.62)/y + (15*t^8.53)/y - t^4.38*y - 5*t^7.15*y + 5*t^7.62*y + 15*t^8.53*y 2*g1^2*g2^2*t^2.76 + t^2.76/(g1^2*g3) + t^2.76/(g2^2*g3) + g1^6*g2^4*g3*t^2.76 + g1^4*g2^6*g3*t^2.76 + t^3.71/(g1^6*g2^6) + g1^5*g2*t^4.15 + g1^3*g2^3*t^4.15 + g1*g2^5*t^4.15 + t^4.62/(g1^3*g2^5*g3) + t^4.62/(g1^5*g2^3*g3) + g1^3*g2*g3*t^4.62 + g1*g2^3*g3*t^4.62 + t^5.09/(g1^5*g2^5) + t^5.09/(g1^11*g2^11*g3^2) + g1*g2*g3^2*t^5.09 + g1^6*g2^2*t^5.53 + 5*g1^4*g2^4*t^5.53 + g1^2*g2^6*t^5.53 + t^5.53/(g1^4*g3^2) + t^5.53/(g2^4*g3^2) + t^5.53/(g1^2*g2^2*g3^2) + (g1^2*t^5.53)/g3 + (g2^2*t^5.53)/g3 + g1^8*g2^6*g3*t^5.53 + g1^6*g2^8*g3*t^5.53 + g1^12*g2^8*g3^2*t^5.53 + g1^10*g2^10*g3^2*t^5.53 + g1^8*g2^12*g3^2*t^5.53 - 4*t^6. - (g1^2*t^6.)/g2^2 - (g2^2*t^6.)/g1^2 - t^6./(g1^6*g2^6*g3^2) - g1^6*g2^6*g3^2*t^6. + t^6.47/(g1^4*g2^4) + 2*g1^7*g2^3*t^6.91 + 2*g1^5*g2^5*t^6.91 + 2*g1^3*g2^7*t^6.91 + (g1^5*t^6.91)/(g2*g3) + (g1^3*g2*t^6.91)/g3 + (g1*g2^3*t^6.91)/g3 + (g2^5*t^6.91)/(g1*g3) + g1^11*g2^5*g3*t^6.91 + g1^9*g2^7*g3*t^6.91 + g1^7*g2^9*g3*t^6.91 + g1^5*g2^11*g3*t^6.91 + t^7.38/(g1^3*g2^7*g3^2) + t^7.38/(g1^5*g2^5*g3^2) + t^7.38/(g1^7*g2^3*g3^2) + t^7.38/(g1*g2^3*g3) + t^7.38/(g1^3*g2*g3) + g1^5*g2^3*g3*t^7.38 + g1^3*g2^5*g3*t^7.38 + g1^9*g2^5*g3^2*t^7.38 + g1^7*g2^7*g3^2*t^7.38 + g1^5*g2^9*g3^2*t^7.38 + t^7.41/(g1^12*g2^12) + t^7.85/(g1^11*g2^13*g3^3) + t^7.85/(g1^13*g2^11*g3^3) + t^7.85/(g1^9*g2^9*g3^2) + g1^3*g2^3*g3^2*t^7.85 + g1^7*g2^5*g3^3*t^7.85 + g1^5*g2^7*g3^3*t^7.85 + g1^10*g2^2*t^8.29 + g1^8*g2^4*t^8.29 + 6*g1^6*g2^6*t^8.29 + g1^4*g2^8*t^8.29 + g1^2*g2^10*t^8.29 + t^8.29/(g1^6*g3^3) + t^8.29/(g2^6*g3^3) + t^8.29/(g1^2*g2^4*g3^3) + t^8.29/(g1^4*g2^2*g3^3) + t^8.29/g3^2 + (g1^2*t^8.29)/(g2^2*g3^2) + (g2^2*t^8.29)/(g1^2*g3^2) + (g1^6*t^8.29)/g3 + (3*g1^4*g2^2*t^8.29)/g3 + (3*g1^2*g2^4*t^8.29)/g3 + (g2^6*t^8.29)/g3 + g1^12*g2^6*g3*t^8.29 + 3*g1^10*g2^8*g3*t^8.29 + 3*g1^8*g2^10*g3*t^8.29 + g1^6*g2^12*g3*t^8.29 + g1^14*g2^10*g3^2*t^8.29 + g1^12*g2^12*g3^2*t^8.29 + g1^10*g2^14*g3^2*t^8.29 + g1^18*g2^12*g3^3*t^8.29 + g1^16*g2^14*g3^3*t^8.29 + g1^14*g2^16*g3^3*t^8.29 + g1^12*g2^18*g3^3*t^8.29 - t^8.33/(g1^7*g2^7) - t^8.33/(g1^13*g2^13*g3^2) - (g3^2*t^8.33)/(g1*g2) - 2*g1^4*t^8.76 - 7*g1^2*g2^2*t^8.76 - 2*g2^4*t^8.76 - t^8.76/(g1^6*g2^8*g3^3) - t^8.76/(g1^8*g2^6*g3^3) - t^8.76/(g1^4*g2^4*g3^2) - (4*t^8.76)/(g1^2*g3) - (4*t^8.76)/(g2^2*g3) - 4*g1^6*g2^4*g3*t^8.76 - 4*g1^4*g2^6*g3*t^8.76 - g1^8*g2^8*g3^2*t^8.76 - g1^12*g2^10*g3^3*t^8.76 - g1^10*g2^12*g3^3*t^8.76 + t^8.8/(g1^11*g2^11) + t^8.8/(g1^17*g2^17*g3^2) + (g3^2*t^8.8)/(g1^5*g2^5) - (g1*g2*t^4.38)/y - (g1^3*g2^3*t^7.15)/y - (g1*t^7.15)/(g2*g3*y) - (g2*t^7.15)/(g1*g3*y) - (g1^7*g2^5*g3*t^7.15)/y - (g1^5*g2^7*g3*t^7.15)/y + t^7.62/(g1*g2*y) + t^7.62/(g1^3*g2^5*g3*y) + t^7.62/(g1^5*g2^3*g3*y) + (g1^3*g2*g3*t^7.62)/y + (g1*g2^3*g3*t^7.62)/y + (g1^6*g2^2*t^8.53)/y + (3*g1^4*g2^4*t^8.53)/y + (g1^2*g2^6*t^8.53)/y + t^8.53/(g1^2*g2^2*g3^2*y) + (2*g1^2*t^8.53)/(g3*y) + (2*g2^2*t^8.53)/(g3*y) + (2*g1^8*g2^6*g3*t^8.53)/y + (2*g1^6*g2^8*g3*t^8.53)/y + (g1^10*g2^10*g3^2*t^8.53)/y - g1*g2*t^4.38*y - g1^3*g2^3*t^7.15*y - (g1*t^7.15*y)/(g2*g3) - (g2*t^7.15*y)/(g1*g3) - g1^7*g2^5*g3*t^7.15*y - g1^5*g2^7*g3*t^7.15*y + (t^7.62*y)/(g1*g2) + (t^7.62*y)/(g1^3*g2^5*g3) + (t^7.62*y)/(g1^5*g2^3*g3) + g1^3*g2*g3*t^7.62*y + g1*g2^3*g3*t^7.62*y + g1^6*g2^2*t^8.53*y + 3*g1^4*g2^4*t^8.53*y + g1^2*g2^6*t^8.53*y + (t^8.53*y)/(g1^2*g2^2*g3^2) + (2*g1^2*t^8.53*y)/g3 + (2*g2^2*t^8.53*y)/g3 + 2*g1^8*g2^6*g3*t^8.53*y + 2*g1^6*g2^8*g3*t^8.53*y + g1^10*g2^10*g3^2*t^8.53*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1951 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5\phi_1^2$ + $ M_5M_6$ + $ \phi_1q_1\tilde{q}_2$ 0.663 0.838 0.7912 [X:[], M:[0.8, 0.8, 0.8, 0.8, 1.2, 0.8], q:[0.8, 0.4], qb:[0.4, 0.8], phi:[0.4]] 6*t^2.4 + 3*t^3.6 + 22*t^4.8 + 9*t^6. - t^4.2/y - t^4.2*y detail {a: 663/1000, c: 419/500, M1: 4/5, M2: 4/5, M3: 4/5, M4: 4/5, M5: 6/5, M6: 4/5, q1: 4/5, q2: 2/5, qb1: 2/5, qb2: 4/5, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
372 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5\phi_1^2$ 0.7103 0.8687 0.8177 [X:[], M:[0.9326, 0.9326, 0.9326, 0.9326, 1.0674], q:[0.6011, 0.4663], qb:[0.4663, 0.6011], phi:[0.4663]] 5*t^2.8 + t^3.2 + t^3.61 + 3*t^4.2 + 4*t^4.6 + 3*t^5.01 + 11*t^5.6 - 3*t^6. - t^4.4/y - t^4.4*y detail