Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1996 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ + $ M_7q_2\tilde{q}_2$ | 0.7102 | 0.9155 | 0.7758 | [X:[], M:[0.6999, 0.6999, 0.6815, 0.6938, 0.6877, 1.3001, 0.6877], q:[0.8174, 0.8357], qb:[0.4827, 0.4766], phi:[0.3469]] | [X:[], M:[[1, -5], [1, -5], [-8, 4], [-2, -2], [-5, 1], [-1, 5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_5$, $ M_7$, $ M_4$, $ \phi_1^2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_6$, $ M_3^2$, $ M_3M_5$, $ M_3M_7$, $ M_3M_4$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_4M_5$, $ M_4M_7$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_4^2$, $ M_1M_5$, $ M_1M_7$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_1\phi_1^2$, $ M_1^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_3M_6$, $ M_5q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_5M_6$, $ M_6M_7$, $ M_4q_1\tilde{q}_2$, $ M_4M_6$, $ M_6\phi_1^2$ | . | -2 | t^2.04 + 2*t^2.06 + 2*t^2.08 + t^2.1 + t^2.88 + t^3.88 + t^3.9 + t^4.09 + 2*t^4.11 + 5*t^4.13 + 5*t^4.14 + 5*t^4.16 + 2*t^4.18 + t^4.2 + t^4.92 + 2*t^4.94 + 3*t^4.96 + t^4.98 + t^5.76 + t^5.93 + 3*t^5.94 + 3*t^5.96 + t^5.98 - 2*t^6. - 2*t^6.02 - t^6.04 + t^6.13 + 2*t^6.15 + 5*t^6.17 + 9*t^6.19 + 11*t^6.21 + 11*t^6.23 + 9*t^6.24 + 5*t^6.26 + 2*t^6.28 + t^6.3 + t^6.76 + t^6.78 + t^6.97 + 2*t^6.99 + 5*t^7. + 5*t^7.02 + 5*t^7.04 + t^7.06 + t^7.76 + t^7.78 + t^7.8 - t^7.86 - t^7.87 + t^7.97 + 3*t^7.99 + 6*t^8.01 + 6*t^8.03 + t^8.04 - 6*t^8.06 - 9*t^8.08 - 8*t^8.1 - 4*t^8.12 - t^8.14 + t^8.18 + 2*t^8.2 + 5*t^8.22 + 9*t^8.23 + 16*t^8.25 + 19*t^8.27 + 22*t^8.29 + 19*t^8.31 + 16*t^8.33 + 9*t^8.34 + 5*t^8.36 + 2*t^8.38 + t^8.4 + t^8.63 + t^8.8 + 3*t^8.82 + 3*t^8.84 - 4*t^8.88 - 4*t^8.9 - 2*t^8.91 - t^4.04/y - t^6.09/y - (2*t^6.1)/y - (2*t^6.12)/y - t^6.14/y + (2*t^7.11)/y + (3*t^7.13)/y + (5*t^7.14)/y + (3*t^7.16)/y + (2*t^7.18)/y + t^7.92/y + (3*t^7.94)/y + (4*t^7.96)/y + (3*t^7.98)/y + t^8./y - t^8.13/y - (2*t^8.15)/y - (5*t^8.17)/y - (5*t^8.18)/y - (5*t^8.2)/y - (2*t^8.22)/y - t^8.24/y + t^8.93/y + (3*t^8.94)/y + (4*t^8.96)/y + (3*t^8.98)/y - t^4.04*y - t^6.09*y - 2*t^6.1*y - 2*t^6.12*y - t^6.14*y + 2*t^7.11*y + 3*t^7.13*y + 5*t^7.14*y + 3*t^7.16*y + 2*t^7.18*y + t^7.92*y + 3*t^7.94*y + 4*t^7.96*y + 3*t^7.98*y + t^8.*y - t^8.13*y - 2*t^8.15*y - 5*t^8.17*y - 5*t^8.18*y - 5*t^8.2*y - 2*t^8.22*y - t^8.24*y + t^8.93*y + 3*t^8.94*y + 4*t^8.96*y + 3*t^8.98*y | (g2^4*t^2.04)/g1^8 + (2*g2*t^2.06)/g1^5 + (2*t^2.08)/(g1^2*g2^2) + (g1*t^2.1)/g2^5 + g1^3*g2^3*t^2.88 + (g2^8*t^3.88)/g1^4 + (g2^5*t^3.9)/g1 + (g2^8*t^4.09)/g1^16 + (2*g2^5*t^4.11)/g1^13 + (5*g2^2*t^4.13)/g1^10 + (5*t^4.14)/(g1^7*g2) + (5*t^4.16)/(g1^4*g2^4) + (2*t^4.18)/(g1*g2^7) + (g1^2*t^4.2)/g2^10 + (g2^7*t^4.92)/g1^5 + (2*g2^4*t^4.94)/g1^2 + 3*g1*g2*t^4.96 + (g1^4*t^4.98)/g2^2 + g1^6*g2^6*t^5.76 + (g2^12*t^5.93)/g1^12 + (3*g2^9*t^5.94)/g1^9 + (3*g2^6*t^5.96)/g1^6 + (g2^3*t^5.98)/g1^3 - 2*t^6. - (2*g1^3*t^6.02)/g2^3 - (g1^6*t^6.04)/g2^6 + (g2^12*t^6.13)/g1^24 + (2*g2^9*t^6.15)/g1^21 + (5*g2^6*t^6.17)/g1^18 + (9*g2^3*t^6.19)/g1^15 + (11*t^6.21)/g1^12 + (11*t^6.23)/(g1^9*g2^3) + (9*t^6.24)/(g1^6*g2^6) + (5*t^6.26)/(g1^3*g2^9) + (2*t^6.28)/g2^12 + (g1^3*t^6.3)/g2^15 + (g2^11*t^6.76)/g1 + g1^2*g2^8*t^6.78 + (g2^11*t^6.97)/g1^13 + (2*g2^8*t^6.99)/g1^10 + (5*g2^5*t^7.)/g1^7 + (5*g2^2*t^7.02)/g1^4 + (5*t^7.04)/(g1*g2) + (g1^2*t^7.06)/g2^4 + (g2^16*t^7.76)/g1^8 + (g2^13*t^7.78)/g1^5 + (g2^10*t^7.8)/g1^2 - g1^7*g2*t^7.86 - (g1^10*t^7.87)/g2^2 + (g2^16*t^7.97)/g1^20 + (3*g2^13*t^7.99)/g1^17 + (6*g2^10*t^8.01)/g1^14 + (6*g2^7*t^8.03)/g1^11 + (g2^4*t^8.04)/g1^8 - (6*g2*t^8.06)/g1^5 - (9*t^8.08)/(g1^2*g2^2) - (8*g1*t^8.1)/g2^5 - (4*g1^4*t^8.12)/g2^8 - (g1^7*t^8.14)/g2^11 + (g2^16*t^8.18)/g1^32 + (2*g2^13*t^8.2)/g1^29 + (5*g2^10*t^8.22)/g1^26 + (9*g2^7*t^8.23)/g1^23 + (16*g2^4*t^8.25)/g1^20 + (19*g2*t^8.27)/g1^17 + (22*t^8.29)/(g1^14*g2^2) + (19*t^8.31)/(g1^11*g2^5) + (16*t^8.33)/(g1^8*g2^8) + (9*t^8.34)/(g1^5*g2^11) + (5*t^8.36)/(g1^2*g2^14) + (2*g1*t^8.38)/g2^17 + (g1^4*t^8.4)/g2^20 + g1^9*g2^9*t^8.63 + (g2^15*t^8.8)/g1^9 + (3*g2^12*t^8.82)/g1^6 + (3*g2^9*t^8.84)/g1^3 - 4*g1^3*g2^3*t^8.88 - 4*g1^6*t^8.9 - (2*g1^9*t^8.91)/g2^3 - t^4.04/(g1*g2*y) - (g2^3*t^6.09)/(g1^9*y) - (2*t^6.1)/(g1^6*y) - (2*t^6.12)/(g1^3*g2^3*y) - t^6.14/(g2^6*y) + (2*g2^5*t^7.11)/(g1^13*y) + (3*g2^2*t^7.13)/(g1^10*y) + (5*t^7.14)/(g1^7*g2*y) + (3*t^7.16)/(g1^4*g2^4*y) + (2*t^7.18)/(g1*g2^7*y) + (g2^7*t^7.92)/(g1^5*y) + (3*g2^4*t^7.94)/(g1^2*y) + (4*g1*g2*t^7.96)/y + (3*g1^4*t^7.98)/(g2^2*y) + (g1^7*t^8.)/(g2^5*y) - (g2^7*t^8.13)/(g1^17*y) - (2*g2^4*t^8.15)/(g1^14*y) - (5*g2*t^8.17)/(g1^11*y) - (5*t^8.18)/(g1^8*g2^2*y) - (5*t^8.2)/(g1^5*g2^5*y) - (2*t^8.22)/(g1^2*g2^8*y) - (g1*t^8.24)/(g2^11*y) + (g2^12*t^8.93)/(g1^12*y) + (3*g2^9*t^8.94)/(g1^9*y) + (4*g2^6*t^8.96)/(g1^6*y) + (3*g2^3*t^8.98)/(g1^3*y) - (t^4.04*y)/(g1*g2) - (g2^3*t^6.09*y)/g1^9 - (2*t^6.1*y)/g1^6 - (2*t^6.12*y)/(g1^3*g2^3) - (t^6.14*y)/g2^6 + (2*g2^5*t^7.11*y)/g1^13 + (3*g2^2*t^7.13*y)/g1^10 + (5*t^7.14*y)/(g1^7*g2) + (3*t^7.16*y)/(g1^4*g2^4) + (2*t^7.18*y)/(g1*g2^7) + (g2^7*t^7.92*y)/g1^5 + (3*g2^4*t^7.94*y)/g1^2 + 4*g1*g2*t^7.96*y + (3*g1^4*t^7.98*y)/g2^2 + (g1^7*t^8.*y)/g2^5 - (g2^7*t^8.13*y)/g1^17 - (2*g2^4*t^8.15*y)/g1^14 - (5*g2*t^8.17*y)/g1^11 - (5*t^8.18*y)/(g1^8*g2^2) - (5*t^8.2*y)/(g1^5*g2^5) - (2*t^8.22*y)/(g1^2*g2^8) - (g1*t^8.24*y)/g2^11 + (g2^12*t^8.93*y)/g1^12 + (3*g2^9*t^8.94*y)/g1^9 + (4*g2^6*t^8.96*y)/g1^6 + (3*g2^3*t^8.98*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
764 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ | 0.6895 | 0.8749 | 0.7881 | [X:[], M:[0.7005, 0.7005, 0.6863, 0.6958, 0.6911, 1.2995], q:[0.819, 0.8331], qb:[0.4805, 0.4758], phi:[0.3479]] | t^2.06 + t^2.07 + 2*t^2.09 + t^2.1 + t^2.87 + t^3.88 + t^3.9 + t^3.93 + t^4.12 + t^4.13 + 3*t^4.15 + 3*t^4.16 + 4*t^4.17 + 2*t^4.19 + t^4.2 + t^4.93 + t^4.94 + 3*t^4.96 + t^4.97 + t^5.74 + t^5.94 + 2*t^5.96 + 2*t^5.97 + 2*t^5.99 - t^6. - t^4.04/y - t^4.04*y | detail |