Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2912 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ | 0.6659 | 0.8858 | 0.7517 | [X:[], M:[1.0, 0.9268, 0.7408, 0.7408, 1.0732, 0.7042, 0.7042], q:[0.7592, 0.2408], qb:[0.5366, 0.5366], phi:[0.4817]] | [X:[], M:[[0, 0], [-8, -8], [-5, 3], [3, -5], [8, 8], [-1, -9], [-9, -1]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_7$, $ M_4$, $ M_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_1$, $ M_5$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ M_4M_6$, $ M_3M_6$, $ M_4M_7$, $ M_3M_7$, $ M_4^2$, $ M_6q_2\tilde{q}_1$, $ M_3M_4$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_3^2$, $ M_7q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_6\phi_1^2$, $ M_6\phi_1q_2^2$, $ M_7\phi_1^2$, $ M_7\phi_1q_2^2$, $ M_1M_6$, $ M_4\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_1M_7$, $ M_3\phi_1^2$, $ M_3\phi_1q_2^2$, $ M_1M_4$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1M_3$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_5M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_5$, $ M_3M_5$, $ M_5q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ \phi_1^4$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2^4$, $ M_1\phi_1^2$ | . | -5 | 2*t^2.11 + 2*t^2.22 + 2*t^2.33 + 2*t^2.89 + t^3. + t^3.22 + 3*t^4.23 + 4*t^4.34 + 7*t^4.45 + 4*t^4.55 + 6*t^4.66 + 4*t^5. + 4*t^5.11 + 6*t^5.22 + 4*t^5.33 + 2*t^5.44 + 2*t^5.55 + 3*t^5.78 + t^5.89 - 5*t^6. + t^6.11 + 4*t^6.34 + t^6.44 + 6*t^6.45 + 10*t^6.56 + 10*t^6.67 + 14*t^6.78 + 8*t^6.89 + 8*t^7. + 6*t^7.12 + 7*t^7.23 + 14*t^7.34 + 10*t^7.45 + 15*t^7.55 + 9*t^7.66 + t^7.77 + 6*t^7.88 + 6*t^7.89 + 4*t^8. - 4*t^8.11 - 6*t^8.22 - 12*t^8.33 - 2*t^8.44 + 5*t^8.45 + 8*t^8.56 + 2*t^8.66 + 17*t^8.67 + 2*t^8.77 + 16*t^8.78 + 12*t^8.89 - t^4.45/y - (2*t^6.56)/y - (2*t^6.67)/y + t^7.23/y + (3*t^7.34)/y + (5*t^7.45)/y + (5*t^7.55)/y + t^7.66/y + (4*t^8.)/y + (6*t^8.11)/y + (8*t^8.22)/y + (6*t^8.33)/y + (2*t^8.44)/y + (2*t^8.55)/y - (3*t^8.67)/y - (3*t^8.78)/y - t^8.89/y - t^4.45*y - 2*t^6.56*y - 2*t^6.67*y + t^7.23*y + 3*t^7.34*y + 5*t^7.45*y + 5*t^7.55*y + t^7.66*y + 4*t^8.*y + 6*t^8.11*y + 8*t^8.22*y + 6*t^8.33*y + 2*t^8.44*y + 2*t^8.55*y - 3*t^8.67*y - 3*t^8.78*y - t^8.89*y | t^2.11/(g1*g2^9) + t^2.11/(g1^9*g2) + (g1^3*t^2.22)/g2^5 + (g2^3*t^2.22)/g1^5 + (g1^7*t^2.33)/g2 + (g2^7*t^2.33)/g1 + (2*t^2.89)/(g1^4*g2^4) + t^3. + g1^8*g2^8*t^3.22 + t^4.23/(g1^2*g2^18) + t^4.23/(g1^10*g2^10) + t^4.23/(g1^18*g2^2) + (g1^2*t^4.34)/g2^14 + (2*t^4.34)/(g1^6*g2^6) + (g2^2*t^4.34)/g1^14 + (2*g1^6*t^4.45)/g2^10 + (3*t^4.45)/(g1^2*g2^2) + (2*g2^6*t^4.45)/g1^10 + (g1^10*t^4.55)/g2^6 + 2*g1^2*g2^2*t^4.55 + (g2^10*t^4.55)/g1^6 + (2*g1^14*t^4.66)/g2^2 + 2*g1^6*g2^6*t^4.66 + (2*g2^14*t^4.66)/g1^2 + (2*t^5.)/(g1^5*g2^13) + (2*t^5.)/(g1^13*g2^5) + (2*t^5.11)/(g1*g2^9) + (2*t^5.11)/(g1^9*g2) + (3*g1^3*t^5.22)/g2^5 + (3*g2^3*t^5.22)/g1^5 + (2*g1^7*t^5.33)/g2 + (2*g2^7*t^5.33)/g1 + g1^11*g2^3*t^5.44 + g1^3*g2^11*t^5.44 + g1^15*g2^7*t^5.55 + g1^7*g2^15*t^5.55 + (3*t^5.78)/(g1^8*g2^8) + t^5.89/(g1^4*g2^4) - 3*t^6. - (g1^8*t^6.)/g2^8 - (g2^8*t^6.)/g1^8 + g1^4*g2^4*t^6.11 + t^6.34/(g1^3*g2^27) + t^6.34/(g1^11*g2^19) + t^6.34/(g1^19*g2^11) + t^6.34/(g1^27*g2^3) + g1^16*g2^16*t^6.44 + (g1*t^6.45)/g2^23 + (2*t^6.45)/(g1^7*g2^15) + (2*t^6.45)/(g1^15*g2^7) + (g2*t^6.45)/g1^23 + (2*g1^5*t^6.56)/g2^19 + (3*t^6.56)/(g1^3*g2^11) + (3*t^6.56)/(g1^11*g2^3) + (2*g2^5*t^6.56)/g1^19 + (2*g1^9*t^6.67)/g2^15 + (3*g1*t^6.67)/g2^7 + (3*g2*t^6.67)/g1^7 + (2*g2^9*t^6.67)/g1^15 + (3*g1^13*t^6.78)/g2^11 + (4*g1^5*t^6.78)/g2^3 + (4*g2^5*t^6.78)/g1^3 + (3*g2^13*t^6.78)/g1^11 + (2*g1^17*t^6.89)/g2^7 + 2*g1^9*g2*t^6.89 + 2*g1*g2^9*t^6.89 + (2*g2^17*t^6.89)/g1^7 + (2*g1^21*t^7.)/g2^3 + 2*g1^13*g2^5*t^7. + 2*g1^5*g2^13*t^7. + (2*g2^21*t^7.)/g1^3 + (2*t^7.12)/(g1^6*g2^22) + (2*t^7.12)/(g1^14*g2^14) + (2*t^7.12)/(g1^22*g2^6) + (2*t^7.23)/(g1^2*g2^18) + (3*t^7.23)/(g1^10*g2^10) + (2*t^7.23)/(g1^18*g2^2) + (4*g1^2*t^7.34)/g2^14 + (6*t^7.34)/(g1^6*g2^6) + (4*g2^2*t^7.34)/g1^14 + (3*g1^6*t^7.45)/g2^10 + (4*t^7.45)/(g1^2*g2^2) + (3*g2^6*t^7.45)/g1^10 + (5*g1^10*t^7.55)/g2^6 + 5*g1^2*g2^2*t^7.55 + (5*g2^10*t^7.55)/g1^6 + (3*g1^14*t^7.66)/g2^2 + 3*g1^6*g2^6*t^7.66 + (3*g2^14*t^7.66)/g1^2 + g1^10*g2^10*t^7.77 + 2*g1^22*g2^6*t^7.88 + 2*g1^14*g2^14*t^7.88 + 2*g1^6*g2^22*t^7.88 + (3*t^7.89)/(g1^9*g2^17) + (3*t^7.89)/(g1^17*g2^9) + (2*t^8.)/(g1^5*g2^13) + (2*t^8.)/(g1^13*g2^5) - (g1^7*t^8.11)/g2^17 - t^8.11/(g1*g2^9) - t^8.11/(g1^9*g2) - (g2^7*t^8.11)/g1^17 - (g1^11*t^8.22)/g2^13 - (2*g1^3*t^8.22)/g2^5 - (2*g2^3*t^8.22)/g1^5 - (g2^11*t^8.22)/g1^13 - (g1^15*t^8.33)/g2^9 - (5*g1^7*t^8.33)/g2 - (5*g2^7*t^8.33)/g1 - (g2^15*t^8.33)/g1^9 - g1^11*g2^3*t^8.44 - g1^3*g2^11*t^8.44 + t^8.45/(g1^4*g2^36) + t^8.45/(g1^12*g2^28) + t^8.45/(g1^20*g2^20) + t^8.45/(g1^28*g2^12) + t^8.45/(g1^36*g2^4) + t^8.56/g1^32 + t^8.56/g2^32 + (2*t^8.56)/(g1^8*g2^24) + (2*t^8.56)/(g1^16*g2^16) + (2*t^8.56)/(g1^24*g2^8) + g1^19*g2^11*t^8.66 + g1^11*g2^19*t^8.66 + (2*g1^4*t^8.67)/g2^28 + (3*t^8.67)/(g1^4*g2^20) + (7*t^8.67)/(g1^12*g2^12) + (3*t^8.67)/(g1^20*g2^4) + (2*g2^4*t^8.67)/g1^28 + g1^23*g2^15*t^8.77 + g1^15*g2^23*t^8.77 + (4*t^8.78)/g1^16 + (2*g1^8*t^8.78)/g2^24 + (4*t^8.78)/g2^16 + (4*t^8.78)/(g1^8*g2^8) + (2*g2^8*t^8.78)/g1^24 + (4*g1^12*t^8.89)/g2^20 + (3*g1^4*t^8.89)/g2^12 - (2*t^8.89)/(g1^4*g2^4) + (3*g2^4*t^8.89)/g1^12 + (4*g2^12*t^8.89)/g1^20 - t^4.45/(g1^2*g2^2*y) - t^6.56/(g1^3*g2^11*y) - t^6.56/(g1^11*g2^3*y) - (g1*t^6.67)/(g2^7*y) - (g2*t^6.67)/(g1^7*y) + t^7.23/(g1^10*g2^10*y) + (g1^2*t^7.34)/(g2^14*y) + t^7.34/(g1^6*g2^6*y) + (g2^2*t^7.34)/(g1^14*y) + (g1^6*t^7.45)/(g2^10*y) + (3*t^7.45)/(g1^2*g2^2*y) + (g2^6*t^7.45)/(g1^10*y) + (g1^10*t^7.55)/(g2^6*y) + (3*g1^2*g2^2*t^7.55)/y + (g2^10*t^7.55)/(g1^6*y) + (g1^6*g2^6*t^7.66)/y + (2*t^8.)/(g1^5*g2^13*y) + (2*t^8.)/(g1^13*g2^5*y) + (3*t^8.11)/(g1*g2^9*y) + (3*t^8.11)/(g1^9*g2*y) + (4*g1^3*t^8.22)/(g2^5*y) + (4*g2^3*t^8.22)/(g1^5*y) + (3*g1^7*t^8.33)/(g2*y) + (3*g2^7*t^8.33)/(g1*y) + (g1^11*g2^3*t^8.44)/y + (g1^3*g2^11*t^8.44)/y + (g1^15*g2^7*t^8.55)/y + (g1^7*g2^15*t^8.55)/y - t^8.67/(g1^4*g2^20*y) - t^8.67/(g1^12*g2^12*y) - t^8.67/(g1^20*g2^4*y) - t^8.78/(g1^16*y) - t^8.78/(g2^16*y) - t^8.78/(g1^8*g2^8*y) - (g1^4*t^8.89)/(g2^12*y) + t^8.89/(g1^4*g2^4*y) - (g2^4*t^8.89)/(g1^12*y) - (t^4.45*y)/(g1^2*g2^2) - (t^6.56*y)/(g1^3*g2^11) - (t^6.56*y)/(g1^11*g2^3) - (g1*t^6.67*y)/g2^7 - (g2*t^6.67*y)/g1^7 + (t^7.23*y)/(g1^10*g2^10) + (g1^2*t^7.34*y)/g2^14 + (t^7.34*y)/(g1^6*g2^6) + (g2^2*t^7.34*y)/g1^14 + (g1^6*t^7.45*y)/g2^10 + (3*t^7.45*y)/(g1^2*g2^2) + (g2^6*t^7.45*y)/g1^10 + (g1^10*t^7.55*y)/g2^6 + 3*g1^2*g2^2*t^7.55*y + (g2^10*t^7.55*y)/g1^6 + g1^6*g2^6*t^7.66*y + (2*t^8.*y)/(g1^5*g2^13) + (2*t^8.*y)/(g1^13*g2^5) + (3*t^8.11*y)/(g1*g2^9) + (3*t^8.11*y)/(g1^9*g2) + (4*g1^3*t^8.22*y)/g2^5 + (4*g2^3*t^8.22*y)/g1^5 + (3*g1^7*t^8.33*y)/g2 + (3*g2^7*t^8.33*y)/g1 + g1^11*g2^3*t^8.44*y + g1^3*g2^11*t^8.44*y + g1^15*g2^7*t^8.55*y + g1^7*g2^15*t^8.55*y - (t^8.67*y)/(g1^4*g2^20) - (t^8.67*y)/(g1^12*g2^12) - (t^8.67*y)/(g1^20*g2^4) - (t^8.78*y)/g1^16 - (t^8.78*y)/g2^16 - (t^8.78*y)/(g1^8*g2^8) - (g1^4*t^8.89*y)/g2^12 + (t^8.89*y)/(g1^4*g2^4) - (g2^4*t^8.89*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1889 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ | 0.6455 | 0.8475 | 0.7617 | [X:[], M:[1.0, 0.9383, 0.7475, 0.7371, 1.0617, 0.7063], q:[0.7577, 0.2423], qb:[0.5256, 0.536], phi:[0.4846]] | t^2.12 + t^2.21 + t^2.24 + t^2.3 + t^2.33 + 2*t^2.91 + t^3. + t^3.18 + t^3.85 + t^4.24 + t^4.33 + t^4.36 + 2*t^4.42 + 2*t^4.45 + t^4.48 + t^4.52 + 2*t^4.55 + t^4.58 + 2*t^4.61 + 2*t^4.64 + 2*t^4.67 + 2*t^5.03 + 2*t^5.12 + t^5.15 + 3*t^5.21 + 3*t^5.24 + 2*t^5.3 + t^5.33 + t^5.4 + t^5.43 + t^5.49 + t^5.52 + 3*t^5.82 + t^5.91 - 3*t^6. - t^4.45/y - t^4.45*y | detail |