Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
464 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_2^2$ 0.7101 0.9145 0.7765 [X:[], M:[0.692, 0.692, 0.692, 0.692, 0.692], q:[0.827, 0.827], qb:[0.481, 0.481], phi:[0.346]] [X:[], M:[[1, -5], [0, -4], [0, -4], [-1, -3], [0, -4]], q:[[-1, 2], [1, 0]], qb:[[0, 3], [0, 3]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ M_5$, $ \phi_1^2$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_1M_3$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ M_1M_4$, $ M_2M_5$, $ M_3M_5$, $ M_5^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_2M_4$, $ M_3M_4$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_4^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$ $M_2q_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$ 3 6*t^2.08 + t^2.89 + 2*t^3.92 + 21*t^4.15 + 7*t^4.96 + t^5.77 + 3*t^6. + 56*t^6.23 + 2*t^6.81 + 19*t^7.04 + t^7.85 - 11*t^8.08 + 126*t^8.3 + t^8.66 - 3*t^8.89 - t^4.04/y - (6*t^6.11)/y + (15*t^7.15)/y + (12*t^7.96)/y - (21*t^8.19)/y - t^4.04*y - 6*t^6.11*y + 15*t^7.15*y + 12*t^7.96*y - 21*t^8.19*y (g1*t^2.08)/g2^5 + (4*t^2.08)/g2^4 + t^2.08/(g1*g2^3) + g2^6*t^2.89 + g1*g2^3*t^3.92 + (g2^5*t^3.92)/g1 + (g1^2*t^4.15)/g2^10 + (4*g1*t^4.15)/g2^9 + (11*t^4.15)/g2^8 + (4*t^4.15)/(g1*g2^7) + t^4.15/(g1^2*g2^6) + g1*g2*t^4.96 + 5*g2^2*t^4.96 + (g2^3*t^4.96)/g1 + g2^12*t^5.77 - 3*t^6. + (g1^2*t^6.)/g2^2 + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + (g2^2*t^6.)/g1^2 + (g1^3*t^6.23)/g2^15 + (4*g1^2*t^6.23)/g2^14 + (11*g1*t^6.23)/g2^13 + (24*t^6.23)/g2^12 + (11*t^6.23)/(g1*g2^11) + (4*t^6.23)/(g1^2*g2^10) + t^6.23/(g1^3*g2^9) + g1*g2^9*t^6.81 + (g2^11*t^6.81)/g1 + t^7.04/g1^2 + (g1^2*t^7.04)/g2^4 + (3*g1*t^7.04)/g2^3 + (11*t^7.04)/g2^2 + (3*t^7.04)/(g1*g2) + g1^2*g2^6*t^7.85 - g1*g2^7*t^7.85 + g2^8*t^7.85 - (g2^9*t^7.85)/g1 + (g2^10*t^7.85)/g1^2 + (g1^3*t^8.08)/g2^7 + (2*g1^2*t^8.08)/g2^6 - (g1*t^8.08)/g2^5 - (15*t^8.08)/g2^4 - t^8.08/(g1*g2^3) + (2*t^8.08)/(g1^2*g2^2) + t^8.08/(g1^3*g2) + (g1^4*t^8.3)/g2^20 + (4*g1^3*t^8.3)/g2^19 + (11*g1^2*t^8.3)/g2^18 + (24*g1*t^8.3)/g2^17 + (46*t^8.3)/g2^16 + (24*t^8.3)/(g1*g2^15) + (11*t^8.3)/(g1^2*g2^14) + (4*t^8.3)/(g1^3*g2^13) + t^8.3/(g1^4*g2^12) + g2^18*t^8.66 + g1^2*g2^4*t^8.89 + g1*g2^5*t^8.89 - 7*g2^6*t^8.89 + (g2^7*t^8.89)/g1 + (g2^8*t^8.89)/g1^2 - t^4.04/(g2^2*y) - (g1*t^6.11)/(g2^7*y) - (4*t^6.11)/(g2^6*y) - t^6.11/(g1*g2^5*y) + (4*g1*t^7.15)/(g2^9*y) + (7*t^7.15)/(g2^8*y) + (4*t^7.15)/(g1*g2^7*y) + (2*g1*g2*t^7.96)/y + (8*g2^2*t^7.96)/y + (2*g2^3*t^7.96)/(g1*y) - (g1^2*t^8.19)/(g2^12*y) - (4*g1*t^8.19)/(g2^11*y) - (11*t^8.19)/(g2^10*y) - (4*t^8.19)/(g1*g2^9*y) - t^8.19/(g1^2*g2^8*y) - (t^4.04*y)/g2^2 - (g1*t^6.11*y)/g2^7 - (4*t^6.11*y)/g2^6 - (t^6.11*y)/(g1*g2^5) + (4*g1*t^7.15*y)/g2^9 + (7*t^7.15*y)/g2^8 + (4*t^7.15*y)/(g1*g2^7) + 2*g1*g2*t^7.96*y + 8*g2^2*t^7.96*y + (2*g2^3*t^7.96*y)/g1 - (g1^2*t^8.19*y)/g2^12 - (4*g1*t^8.19*y)/g2^11 - (11*t^8.19*y)/g2^10 - (4*t^8.19*y)/(g1*g2^9) - (t^8.19*y)/(g1^2*g2^8)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1853 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_2^2$ + $ M_6q_1\tilde{q}_2$ 0.7308 0.9551 0.7651 [X:[], M:[0.6855, 0.6901, 0.6901, 0.6948, 0.6901, 0.6855], q:[0.8321, 0.8228], qb:[0.4824, 0.4824], phi:[0.3451]] 2*t^2.06 + 4*t^2.07 + t^2.08 + t^2.89 + t^3.92 + 3*t^4.11 + 8*t^4.13 + 12*t^4.14 + 4*t^4.15 + t^4.17 + 2*t^4.95 + 5*t^4.96 + t^4.98 + t^5.79 + 2*t^5.97 + 2*t^5.99 - 4*t^6. - t^4.04/y - t^4.04*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
290 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ 0.6895 0.8743 0.7886 [X:[], M:[0.6948, 0.6948, 0.6948, 0.6948], q:[0.8263, 0.8263], qb:[0.4789, 0.4789], phi:[0.3474]] 5*t^2.08 + t^2.87 + 3*t^3.92 + 15*t^4.17 + 6*t^4.96 + t^5.75 + 6*t^6. - t^4.04/y - t^4.04*y detail