Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45894 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.7047 0.8479 0.8312 [M:[0.8283, 0.8283, 0.8283], q:[0.5858, 0.5858], qb:[0.5858, 0.8225], phi:[0.355]] [M:[[0, 1, -7], [1, 0, -7], [-1, -1, 0]], q:[[-1, -1, 7], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$ ${}$ -9 t^2.13 + 3*t^2.485 + 3*t^4.225 + t^4.26 + 6*t^4.58 + 3*t^4.615 + 6*t^4.97 - 9*t^6. + t^6.39 + 12*t^6.71 + 3*t^6.745 + 10*t^7.065 + 6*t^7.1 + 10*t^7.455 - t^7.74 - 3*t^8.095 - 9*t^8.13 - 21*t^8.485 + t^8.52 + 10*t^8.805 + 6*t^8.84 + 3*t^8.875 - t^4.065/y - t^6.195/y - (3*t^6.55)/y + (3*t^7.58)/y + (3*t^7.615)/y + t^7.935/y + (3*t^7.97)/y - t^8.325/y - (3*t^8.68)/y - t^4.065*y - t^6.195*y - 3*t^6.55*y + 3*t^7.58*y + 3*t^7.615*y + t^7.935*y + 3*t^7.97*y - t^8.325*y - 3*t^8.68*y t^2.13/g3^4 + t^2.485/(g1*g2) + (g1*t^2.485)/g3^7 + (g2*t^2.485)/g3^7 + g1*g3*t^4.225 + g2*g3*t^4.225 + (g3^8*t^4.225)/(g1*g2) + t^4.26/g3^8 + (g1^2*t^4.58)/g3^2 + (g1*g2*t^4.58)/g3^2 + (g2^2*t^4.58)/g3^2 + (g3^5*t^4.58)/g1 + (g3^5*t^4.58)/g2 + (g3^12*t^4.58)/(g1^2*g2^2) + (g1*t^4.615)/g3^11 + (g2*t^4.615)/g3^11 + t^4.615/(g1*g2*g3^4) + t^4.97/(g1^2*g2^2) + (g1^2*t^4.97)/g3^14 + (g1*g2*t^4.97)/g3^14 + (g2^2*t^4.97)/g3^14 + t^4.97/(g1*g3^7) + t^4.97/(g2*g3^7) - 3*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g1^2*g2*t^6.)/g3^7 - (g1*g2^2*t^6.)/g3^7 - (g3^7*t^6.)/(g1*g2^2) - (g3^7*t^6.)/(g1^2*g2) + t^6.39/g3^12 + (2*g1^2*t^6.71)/g3^6 + (2*g1*g2*t^6.71)/g3^6 + (2*g2^2*t^6.71)/g3^6 + (2*g3*t^6.71)/g1 + (2*g3*t^6.71)/g2 + (2*g3^8*t^6.71)/(g1^2*g2^2) + (g1*t^6.745)/g3^15 + (g2*t^6.745)/g3^15 + t^6.745/(g1*g2*g3^8) + (g1^3*t^7.065)/g3^9 + (g1^2*g2*t^7.065)/g3^9 + (g1*g2^2*t^7.065)/g3^9 + (g2^3*t^7.065)/g3^9 + t^7.065/g3^2 + (g1*t^7.065)/(g2*g3^2) + (g2*t^7.065)/(g1*g3^2) + (g3^5*t^7.065)/(g1*g2^2) + (g3^5*t^7.065)/(g1^2*g2) + (g3^12*t^7.065)/(g1^3*g2^3) + (g1^2*t^7.1)/g3^18 + (g1*g2*t^7.1)/g3^18 + (g2^2*t^7.1)/g3^18 + t^7.1/(g1*g3^11) + t^7.1/(g2*g3^11) + t^7.1/(g1^2*g2^2*g3^4) + t^7.455/(g1^3*g2^3) + (g1^3*t^7.455)/g3^21 + (g1^2*g2*t^7.455)/g3^21 + (g1*g2^2*t^7.455)/g3^21 + (g2^3*t^7.455)/g3^21 + t^7.455/g3^14 + (g1*t^7.455)/(g2*g3^14) + (g2*t^7.455)/(g1*g3^14) + t^7.455/(g1*g2^2*g3^7) + t^7.455/(g1^2*g2*g3^7) - g3^8*t^7.74 - g1*g3^5*t^8.095 - g2*g3^5*t^8.095 - (g3^12*t^8.095)/(g1*g2) - (g1^2*g2*t^8.13)/g3^11 - (g1*g2^2*t^8.13)/g3^11 - (3*t^8.13)/g3^4 - (g1*t^8.13)/(g2*g3^4) - (g2*t^8.13)/(g1*g3^4) - (g3^3*t^8.13)/(g1*g2^2) - (g3^3*t^8.13)/(g1^2*g2) - t^8.485/g1^2 - t^8.485/g2^2 - (4*t^8.485)/(g1*g2) - (g1^3*g2*t^8.485)/g3^14 - (g1^2*g2^2*t^8.485)/g3^14 - (g1*g2^3*t^8.485)/g3^14 - (4*g1*t^8.485)/g3^7 - (g1^2*t^8.485)/(g2*g3^7) - (4*g2*t^8.485)/g3^7 - (g2^2*t^8.485)/(g1*g3^7) - (g3^7*t^8.485)/(g1^2*g2^3) - (g3^7*t^8.485)/(g1^3*g2^2) + t^8.52/g3^16 + (g1^3*t^8.805)/g3 + (g1^2*g2*t^8.805)/g3 + (g1*g2^2*t^8.805)/g3 + (g2^3*t^8.805)/g3 + g3^6*t^8.805 + (g1*g3^6*t^8.805)/g2 + (g2*g3^6*t^8.805)/g1 + (g3^13*t^8.805)/(g1*g2^2) + (g3^13*t^8.805)/(g1^2*g2) + (g3^20*t^8.805)/(g1^3*g2^3) + (g1^2*t^8.84)/g3^10 + (g1*g2*t^8.84)/g3^10 + (g2^2*t^8.84)/g3^10 + t^8.84/(g1*g3^3) + t^8.84/(g2*g3^3) + (g3^4*t^8.84)/(g1^2*g2^2) + (g1*t^8.875)/g3^19 + (g2*t^8.875)/g3^19 + t^8.875/(g1*g2*g3^12) - t^4.065/(g3^2*y) - t^6.195/(g3^6*y) - (g1*t^6.55)/(g3^9*y) - (g2*t^6.55)/(g3^9*y) - t^6.55/(g1*g2*g3^2*y) + (g1*g2*t^7.58)/(g3^2*y) + (g3^5*t^7.58)/(g1*y) + (g3^5*t^7.58)/(g2*y) + (g1*t^7.615)/(g3^11*y) + (g2*t^7.615)/(g3^11*y) + t^7.615/(g1*g2*g3^4*y) + (g3^2*t^7.935)/y + (g1*g2*t^7.97)/(g3^14*y) + t^7.97/(g1*g3^7*y) + t^7.97/(g2*g3^7*y) - t^8.325/(g3^10*y) - (g1*t^8.68)/(g3^13*y) - (g2*t^8.68)/(g3^13*y) - t^8.68/(g1*g2*g3^6*y) - (t^4.065*y)/g3^2 - (t^6.195*y)/g3^6 - (g1*t^6.55*y)/g3^9 - (g2*t^6.55*y)/g3^9 - (t^6.55*y)/(g1*g2*g3^2) + (g1*g2*t^7.58*y)/g3^2 + (g3^5*t^7.58*y)/g1 + (g3^5*t^7.58*y)/g2 + (g1*t^7.615*y)/g3^11 + (g2*t^7.615*y)/g3^11 + (t^7.615*y)/(g1*g2*g3^4) + g3^2*t^7.935*y + (g1*g2*t^7.97*y)/g3^14 + (t^7.97*y)/(g1*g3^7) + (t^7.97*y)/(g2*g3^7) - (t^8.325*y)/g3^10 - (g1*t^8.68*y)/g3^13 - (g2*t^8.68*y)/g3^13 - (t^8.68*y)/(g1*g2*g3^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46022 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{3}$ 0.6765 0.812 0.8331 [M:[1.0, 0.9097, 1.0], q:[0.5452, 0.4548], qb:[0.5452, 0.7922], phi:[0.4157]] t^2.494 + t^2.729 + 2*t^3. + t^3.741 + t^3.976 + 2*t^4.012 + 2*t^4.247 + 3*t^4.518 + t^4.988 + t^5.223 + t^5.458 + 2*t^5.494 - 2*t^6. - t^4.247/y - t^4.247*y detail
46031 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}^{2}$ 0.6869 0.8254 0.8322 [M:[0.8713, 1.0, 0.8713], q:[0.5, 0.6287], qb:[0.5, 0.8041], phi:[0.3918]] t^2.351 + 2*t^2.614 + t^3. + 2*t^3.912 + 3*t^4.175 + t^4.298 + 2*t^4.561 + t^4.702 + t^4.948 + 2*t^4.965 + 3*t^5.228 + t^5.351 - 4*t^6. - t^4.175/y - t^4.175*y detail
45948 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ 0.6496 0.7822 0.8305 [M:[0.9769, 0.9769, 1.1214], q:[0.5838, 0.4393], qb:[0.4393, 0.7803], phi:[0.4393]] t^2.636 + 2*t^2.931 + t^3.364 + 2*t^3.659 + 3*t^3.954 + t^4.092 + 2*t^4.387 + t^4.821 + t^5.272 + 3*t^5.861 - 4*t^6. - t^4.318/y - t^4.318*y detail
46004 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{4}$ 0.5859 0.7109 0.8242 [M:[1.1667, 1.1667, 1.1667], q:[0.4167, 0.4167], qb:[0.4167, 0.75], phi:[0.5]] t^3. + 6*t^3.5 + 6*t^4. - 9*t^6. - t^4.5/y - t^4.5*y detail {a: 75/128, c: 91/128, M1: 7/6, M2: 7/6, M3: 7/6, q1: 5/12, q2: 5/12, qb1: 5/12, qb2: 3/4, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45849 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 0.7576 0.9264 0.8177 [M:[0.7673, 0.7673, 0.7673], q:[0.6164, 0.6164], qb:[0.6164, 0.5482], phi:[0.4007]] 3*t^2.302 + t^2.404 + 3*t^3.494 + t^4.491 + 6*t^4.604 + 3*t^4.696 + 3*t^4.706 + t^4.808 + 6*t^4.9 + 6*t^5.795 + 3*t^5.898 - 10*t^6. - t^4.202/y - t^4.202*y detail