Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45894 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ 0.7047 0.8479 0.8312 [X:[], M:[0.8283, 0.8283, 0.8283], q:[0.5858, 0.5858], qb:[0.5858, 0.8225], phi:[0.355]] [X:[], M:[[0, 1, -7], [1, 0, -7], [-1, -1, 0]], q:[[-1, -1, 7], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ M_3$, $ M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1^4$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_3^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ M_1M_3$, $ M_2M_3$ . -9 t^2.13 + 3*t^2.48 + 3*t^4.23 + t^4.26 + 6*t^4.58 + 3*t^4.61 + 6*t^4.97 - 9*t^6. + t^6.39 + 12*t^6.71 + 3*t^6.74 + 10*t^7.06 + 6*t^7.1 + 10*t^7.45 - t^7.74 - 3*t^8.1 - 9*t^8.13 - 21*t^8.48 + t^8.52 + 10*t^8.81 + 6*t^8.84 + 3*t^8.87 - t^4.06/y - t^6.19/y - (3*t^6.55)/y + (3*t^7.58)/y + (3*t^7.61)/y + t^7.94/y + (3*t^7.97)/y - t^8.32/y - (3*t^8.68)/y - t^4.06*y - t^6.19*y - 3*t^6.55*y + 3*t^7.58*y + 3*t^7.61*y + t^7.94*y + 3*t^7.97*y - t^8.32*y - 3*t^8.68*y t^2.13/g3^4 + t^2.48/(g1*g2) + (g1*t^2.48)/g3^7 + (g2*t^2.48)/g3^7 + g1*g3*t^4.23 + g2*g3*t^4.23 + (g3^8*t^4.23)/(g1*g2) + t^4.26/g3^8 + (g1^2*t^4.58)/g3^2 + (g1*g2*t^4.58)/g3^2 + (g2^2*t^4.58)/g3^2 + (g3^5*t^4.58)/g1 + (g3^5*t^4.58)/g2 + (g3^12*t^4.58)/(g1^2*g2^2) + (g1*t^4.61)/g3^11 + (g2*t^4.61)/g3^11 + t^4.61/(g1*g2*g3^4) + t^4.97/(g1^2*g2^2) + (g1^2*t^4.97)/g3^14 + (g1*g2*t^4.97)/g3^14 + (g2^2*t^4.97)/g3^14 + t^4.97/(g1*g3^7) + t^4.97/(g2*g3^7) - 3*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g1^2*g2*t^6.)/g3^7 - (g1*g2^2*t^6.)/g3^7 - (g3^7*t^6.)/(g1*g2^2) - (g3^7*t^6.)/(g1^2*g2) + t^6.39/g3^12 + (2*g1^2*t^6.71)/g3^6 + (2*g1*g2*t^6.71)/g3^6 + (2*g2^2*t^6.71)/g3^6 + (2*g3*t^6.71)/g1 + (2*g3*t^6.71)/g2 + (2*g3^8*t^6.71)/(g1^2*g2^2) + (g1*t^6.74)/g3^15 + (g2*t^6.74)/g3^15 + t^6.74/(g1*g2*g3^8) + (g1^3*t^7.06)/g3^9 + (g1^2*g2*t^7.06)/g3^9 + (g1*g2^2*t^7.06)/g3^9 + (g2^3*t^7.06)/g3^9 + t^7.06/g3^2 + (g1*t^7.06)/(g2*g3^2) + (g2*t^7.06)/(g1*g3^2) + (g3^5*t^7.06)/(g1*g2^2) + (g3^5*t^7.06)/(g1^2*g2) + (g3^12*t^7.06)/(g1^3*g2^3) + (g1^2*t^7.1)/g3^18 + (g1*g2*t^7.1)/g3^18 + (g2^2*t^7.1)/g3^18 + t^7.1/(g1*g3^11) + t^7.1/(g2*g3^11) + t^7.1/(g1^2*g2^2*g3^4) + t^7.45/(g1^3*g2^3) + (g1^3*t^7.45)/g3^21 + (g1^2*g2*t^7.45)/g3^21 + (g1*g2^2*t^7.45)/g3^21 + (g2^3*t^7.45)/g3^21 + t^7.45/g3^14 + (g1*t^7.45)/(g2*g3^14) + (g2*t^7.45)/(g1*g3^14) + t^7.45/(g1*g2^2*g3^7) + t^7.45/(g1^2*g2*g3^7) - g3^8*t^7.74 - g1*g3^5*t^8.1 - g2*g3^5*t^8.1 - (g3^12*t^8.1)/(g1*g2) - (g1^2*g2*t^8.13)/g3^11 - (g1*g2^2*t^8.13)/g3^11 - (3*t^8.13)/g3^4 - (g1*t^8.13)/(g2*g3^4) - (g2*t^8.13)/(g1*g3^4) - (g3^3*t^8.13)/(g1*g2^2) - (g3^3*t^8.13)/(g1^2*g2) - t^8.48/g1^2 - t^8.48/g2^2 - (4*t^8.48)/(g1*g2) - (g1^3*g2*t^8.48)/g3^14 - (g1^2*g2^2*t^8.48)/g3^14 - (g1*g2^3*t^8.48)/g3^14 - (4*g1*t^8.48)/g3^7 - (g1^2*t^8.48)/(g2*g3^7) - (4*g2*t^8.48)/g3^7 - (g2^2*t^8.48)/(g1*g3^7) - (g3^7*t^8.48)/(g1^2*g2^3) - (g3^7*t^8.48)/(g1^3*g2^2) + t^8.52/g3^16 + (g1^3*t^8.81)/g3 + (g1^2*g2*t^8.81)/g3 + (g1*g2^2*t^8.81)/g3 + (g2^3*t^8.81)/g3 + g3^6*t^8.81 + (g1*g3^6*t^8.81)/g2 + (g2*g3^6*t^8.81)/g1 + (g3^13*t^8.81)/(g1*g2^2) + (g3^13*t^8.81)/(g1^2*g2) + (g3^20*t^8.81)/(g1^3*g2^3) + (g1^2*t^8.84)/g3^10 + (g1*g2*t^8.84)/g3^10 + (g2^2*t^8.84)/g3^10 + t^8.84/(g1*g3^3) + t^8.84/(g2*g3^3) + (g3^4*t^8.84)/(g1^2*g2^2) + (g1*t^8.87)/g3^19 + (g2*t^8.87)/g3^19 + t^8.87/(g1*g2*g3^12) - t^4.06/(g3^2*y) - t^6.19/(g3^6*y) - (g1*t^6.55)/(g3^9*y) - (g2*t^6.55)/(g3^9*y) - t^6.55/(g1*g2*g3^2*y) + (g1*g2*t^7.58)/(g3^2*y) + (g3^5*t^7.58)/(g1*y) + (g3^5*t^7.58)/(g2*y) + (g1*t^7.61)/(g3^11*y) + (g2*t^7.61)/(g3^11*y) + t^7.61/(g1*g2*g3^4*y) + (g3^2*t^7.94)/y + (g1*g2*t^7.97)/(g3^14*y) + t^7.97/(g1*g3^7*y) + t^7.97/(g2*g3^7*y) - t^8.32/(g3^10*y) - (g1*t^8.68)/(g3^13*y) - (g2*t^8.68)/(g3^13*y) - t^8.68/(g1*g2*g3^6*y) - (t^4.06*y)/g3^2 - (t^6.19*y)/g3^6 - (g1*t^6.55*y)/g3^9 - (g2*t^6.55*y)/g3^9 - (t^6.55*y)/(g1*g2*g3^2) + (g1*g2*t^7.58*y)/g3^2 + (g3^5*t^7.58*y)/g1 + (g3^5*t^7.58*y)/g2 + (g1*t^7.61*y)/g3^11 + (g2*t^7.61*y)/g3^11 + (t^7.61*y)/(g1*g2*g3^4) + g3^2*t^7.94*y + (g1*g2*t^7.97*y)/g3^14 + (t^7.97*y)/(g1*g3^7) + (t^7.97*y)/(g2*g3^7) - (t^8.32*y)/g3^10 - (g1*t^8.68*y)/g3^13 - (g2*t^8.68*y)/g3^13 - (t^8.68*y)/(g1*g2*g3^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46022 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_1M_3$ 0.6765 0.812 0.8331 [X:[], M:[1.0, 0.9097, 1.0], q:[0.5452, 0.4548], qb:[0.5452, 0.7922], phi:[0.4157]] t^2.49 + t^2.73 + 2*t^3. + t^3.74 + t^3.98 + 2*t^4.01 + 2*t^4.25 + 3*t^4.52 + t^4.99 + t^5.22 + t^5.46 + 2*t^5.49 - 2*t^6. - t^4.25/y - t^4.25*y detail
46031 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_2^2$ 0.6869 0.8254 0.8322 [X:[], M:[0.8713, 1.0, 0.8713], q:[0.5, 0.6287], qb:[0.5, 0.8041], phi:[0.3918]] t^2.35 + 2*t^2.61 + t^3. + 2*t^3.91 + 3*t^4.18 + t^4.3 + 2*t^4.56 + t^4.7 + t^4.95 + 2*t^4.96 + 3*t^5.23 + t^5.35 - 4*t^6. - t^4.18/y - t^4.18*y detail
45948 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ 0.6496 0.7822 0.8305 [X:[], M:[0.9769, 0.9769, 1.1214], q:[0.5838, 0.4393], qb:[0.4393, 0.7803], phi:[0.4393]] t^2.64 + 2*t^2.93 + t^3.36 + 2*t^3.66 + 3*t^3.95 + t^4.09 + 2*t^4.39 + t^4.82 + t^5.27 + 3*t^5.86 - 4*t^6. - t^4.32/y - t^4.32*y detail
46004 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^4$ 0.5859 0.7109 0.8242 [X:[], M:[1.1667, 1.1667, 1.1667], q:[0.4167, 0.4167], qb:[0.4167, 0.75], phi:[0.5]] t^3. + 6*t^3.5 + 6*t^4. - 9*t^6. - t^4.5/y - t^4.5*y detail {a: 75/128, c: 91/128, M1: 7/6, M2: 7/6, M3: 7/6, q1: 5/12, q2: 5/12, qb1: 5/12, qb2: 3/4, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45849 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ 0.7576 0.9264 0.8177 [X:[], M:[0.7673, 0.7673, 0.7673], q:[0.6164, 0.6164], qb:[0.6164, 0.5482], phi:[0.4007]] 3*t^2.3 + t^2.4 + 3*t^3.49 + t^4.49 + 6*t^4.6 + 3*t^4.7 + 3*t^4.71 + t^4.81 + 6*t^4.9 + 6*t^5.8 + 3*t^5.9 - 10*t^6. - t^4.2/y - t^4.2*y detail