Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
795 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ 0.8092 1.0197 0.7935 [M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] [M:[[-2, -2], [-2, -2], [-4, 0], [0, -4], [-2, -2], [-2, -2]], q:[[0, 2], [2, 0]], qb:[[2, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -16 7*t^2.255 + 28*t^4.511 + 10*t^4.872 - 16*t^6. + 84*t^6.766 + 55*t^7.128 - t^7.489 - 102*t^8.255 - 25*t^8.617 - t^4.128/y - (7*t^6.383)/y + (21*t^7.511)/y + (7*t^7.872)/y - (28*t^8.638)/y - t^4.128*y - 7*t^6.383*y + 21*t^7.511*y + 7*t^7.872*y - 28*t^8.638*y t^2.255/g1^4 + t^2.255/g2^4 + (5*t^2.255)/(g1^2*g2^2) + t^4.511/g1^8 + t^4.511/g2^8 + (5*t^4.511)/(g1^2*g2^6) + (16*t^4.511)/(g1^4*g2^4) + (5*t^4.511)/(g1^6*g2^2) + (3*g1^3*t^4.872)/g2 + 4*g1*g2*t^4.872 + (3*g2^3*t^4.872)/g1 - 8*t^6. - (4*g1^2*t^6.)/g2^2 - (4*g2^2*t^6.)/g1^2 + t^6.766/g1^12 + t^6.766/g2^12 + (5*t^6.766)/(g1^2*g2^10) + (16*t^6.766)/(g1^4*g2^8) + (40*t^6.766)/(g1^6*g2^6) + (16*t^6.766)/(g1^8*g2^4) + (5*t^6.766)/(g1^10*g2^2) + (3*g1^3*t^7.128)/g2^5 + (15*g1*t^7.128)/g2^3 + (19*t^7.128)/(g1*g2) + (15*g2*t^7.128)/g1^3 + (3*g2^3*t^7.128)/g1^5 - g1^4*g2^4*t^7.489 - (25*t^8.255)/g1^4 - (4*g1^2*t^8.255)/g2^6 - (25*t^8.255)/g2^4 - (44*t^8.255)/(g1^2*g2^2) - (4*g2^2*t^8.255)/g1^6 - 7*g1^5*g2*t^8.617 - 11*g1^3*g2^3*t^8.617 - 7*g1*g2^5*t^8.617 - t^4.128/(g1*g2*y) - t^6.383/(g1*g2^5*y) - (5*t^6.383)/(g1^3*g2^3*y) - t^6.383/(g1^5*g2*y) + (5*t^7.511)/(g1^2*g2^6*y) + (11*t^7.511)/(g1^4*g2^4*y) + (5*t^7.511)/(g1^6*g2^2*y) + (g1^3*t^7.872)/(g2*y) + (5*g1*g2*t^7.872)/y + (g2^3*t^7.872)/(g1*y) - t^8.638/(g1*g2^9*y) - (5*t^8.638)/(g1^3*g2^7*y) - (16*t^8.638)/(g1^5*g2^5*y) - (5*t^8.638)/(g1^7*g2^3*y) - t^8.638/(g1^9*g2*y) - (t^4.128*y)/(g1*g2) - (t^6.383*y)/(g1*g2^5) - (5*t^6.383*y)/(g1^3*g2^3) - (t^6.383*y)/(g1^5*g2) + (5*t^7.511*y)/(g1^2*g2^6) + (11*t^7.511*y)/(g1^4*g2^4) + (5*t^7.511*y)/(g1^6*g2^2) + (g1^3*t^7.872*y)/g2 + 5*g1*g2*t^7.872*y + (g2^3*t^7.872*y)/g1 - (t^8.638*y)/(g1*g2^9) - (5*t^8.638*y)/(g1^3*g2^7) - (16*t^8.638*y)/(g1^5*g2^5) - (5*t^8.638*y)/(g1^7*g2^3) - (t^8.638*y)/(g1^9*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1274 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{7}$ 0.791 0.9858 0.8024 [M:[0.7646, 0.7646, 0.7921, 0.7371, 0.7646, 0.7646, 1.2079], q:[0.6314, 0.604], qb:[0.604, 0.6314], phi:[0.3823]] t^2.211 + 5*t^2.294 + t^3.624 + t^4.423 + 5*t^4.505 + 15*t^4.588 + 3*t^4.771 + 4*t^4.853 + 3*t^4.936 + t^5.835 + t^5.918 - 8*t^6. - t^4.147/y - t^4.147*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
508 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.7904 0.9838 0.8034 [M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] 6*t^2.286 + t^3.714 + 21*t^4.571 + 10*t^4.857 - 10*t^6. - t^4.143/y - t^4.143*y detail {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21}