Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45897 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ 0.7737 0.9544 0.8107 [X:[], M:[0.7498, 0.7801, 0.7498, 0.7817], q:[0.641, 0.6091], qb:[0.5788, 0.6091], phi:[0.3905]] [X:[], M:[[-4, -4, 0, 0], [-4, 0, -4, 0], [-4, 0, 0, -4], [0, -4, 0, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ M_2$, $ \phi_1^2$, $ M_4$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_3^2$, $ M_1M_3$, $ M_1M_2$, $ M_3M_4$, $ M_3\phi_1^2$, $ M_1M_4$, $ M_2M_3$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2\phi_1^2$, $ M_4^2$, $ M_4\phi_1^2$, $ M_2M_4$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ . -6 2*t^2.25 + 2*t^2.34 + t^2.35 + 2*t^3.56 + 3*t^4.5 + 6*t^4.59 + t^4.64 + 2*t^4.68 + 4*t^4.69 + 2*t^4.74 + 4*t^4.83 + 2*t^4.92 + t^5.02 + 3*t^5.81 + 2*t^5.91 - 6*t^6. - 2*t^6.09 - 2*t^6.1 - t^6.19 + 4*t^6.75 + 9*t^6.84 + 2*t^6.89 + 4*t^6.93 + 8*t^6.94 + 4*t^6.98 + 2*t^6.99 + 2*t^7.02 + 7*t^7.03 + t^7.04 + 10*t^7.08 + 3*t^7.13 + 10*t^7.17 + t^7.18 + 2*t^7.26 + 2*t^7.27 - t^7.31 + 2*t^7.36 + 4*t^8.06 + 2*t^8.16 + 2*t^8.21 - 10*t^8.25 + 2*t^8.3 - 15*t^8.34 - 7*t^8.35 + 2*t^8.39 - 4*t^8.43 - 8*t^8.44 - 3*t^8.48 - 2*t^8.49 - 2*t^8.53 - 4*t^8.58 - 2*t^8.67 - t^4.17/y - (2*t^6.42)/y - (2*t^6.51)/y - t^6.52/y + t^7.5/y + (6*t^7.59)/y + t^7.68/y + (2*t^7.69)/y + (3*t^7.83)/y + (2*t^7.92)/y - (3*t^8.67)/y - (4*t^8.76)/y - (2*t^8.77)/y + (4*t^8.81)/y - (2*t^8.85)/y - (4*t^8.86)/y + (2*t^8.9)/y + (4*t^8.91)/y - t^4.17*y - 2*t^6.42*y - 2*t^6.51*y - t^6.52*y + t^7.5*y + 6*t^7.59*y + t^7.68*y + 2*t^7.69*y + 3*t^7.83*y + 2*t^7.92*y - 3*t^8.67*y - 4*t^8.76*y - 2*t^8.77*y + 4*t^8.81*y - 2*t^8.85*y - 4*t^8.86*y + 2*t^8.9*y + 4*t^8.91*y t^2.25/(g1^4*g2^4) + t^2.25/(g1^4*g4^4) + t^2.34/(g1^4*g3^4) + t^2.34/(g1^2*g2^2*g3^2*g4^2) + t^2.35/(g2^4*g4^4) + g2^4*g3^4*t^3.56 + g3^4*g4^4*t^3.56 + t^4.5/(g1^8*g2^8) + t^4.5/(g1^8*g4^8) + t^4.5/(g1^8*g2^4*g4^4) + t^4.59/(g1^8*g2^4*g3^4) + t^4.59/(g1^4*g2^4*g4^8) + t^4.59/(g1^6*g2^2*g3^2*g4^6) + t^4.59/(g1^4*g2^8*g4^4) + t^4.59/(g1^8*g3^4*g4^4) + t^4.59/(g1^6*g2^6*g3^2*g4^2) + (g3^7*t^4.64)/(g1*g2*g4) + t^4.68/(g1^8*g3^8) + t^4.68/(g1^6*g2^2*g3^6*g4^2) + t^4.69/(g2^8*g4^8) + t^4.69/(g1^2*g2^6*g3^2*g4^6) + (2*t^4.69)/(g1^4*g2^4*g3^4*g4^4) + (g2^3*g3^3*t^4.74)/(g1*g4) + (g3^3*g4^3*t^4.74)/(g1*g2) + (g2^7*t^4.83)/(g1*g3*g4) + (g1^3*g3^3*t^4.83)/(g2*g4) + (g2^3*g4^3*t^4.83)/(g1*g3) + (g4^7*t^4.83)/(g1*g2*g3) + (g1^3*g2^3*t^4.92)/(g3*g4) + (g1^3*g4^3*t^4.92)/(g2*g3) + (g1^7*t^5.02)/(g2*g3*g4) + (g3^4*t^5.81)/g1^4 + (g2^4*g3^4*t^5.81)/(g1^4*g4^4) + (g3^4*g4^4*t^5.81)/(g1^4*g2^4) + (g2^2*g3^2*t^5.91)/(g1^2*g4^2) + (g3^2*g4^2*t^5.91)/(g1^2*g2^2) - 4*t^6. - (g2^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g2^4*t^6.09)/g3^4 - (g4^4*t^6.09)/g3^4 - (g1^4*t^6.1)/g2^4 - (g1^4*t^6.1)/g4^4 - (g1^4*t^6.19)/g3^4 + t^6.75/(g1^12*g2^12) + t^6.75/(g1^12*g4^12) + t^6.75/(g1^12*g2^4*g4^8) + t^6.75/(g1^12*g2^8*g4^4) + t^6.84/(g1^12*g2^8*g3^4) + t^6.84/(g1^8*g2^4*g4^12) + t^6.84/(g1^10*g2^2*g3^2*g4^10) + t^6.84/(g1^8*g2^8*g4^8) + t^6.84/(g1^12*g3^4*g4^8) + t^6.84/(g1^10*g2^6*g3^2*g4^6) + t^6.84/(g1^8*g2^12*g4^4) + t^6.84/(g1^12*g2^4*g3^4*g4^4) + t^6.84/(g1^10*g2^10*g3^2*g4^2) + (g3^7*t^6.89)/(g1^5*g2*g4^5) + (g3^7*t^6.89)/(g1^5*g2^5*g4) + t^6.93/(g1^12*g2^4*g3^8) + t^6.93/(g1^10*g2^2*g3^6*g4^6) + t^6.93/(g1^12*g3^8*g4^4) + t^6.93/(g1^10*g2^6*g3^6*g4^2) + t^6.94/(g1^4*g2^8*g4^12) + t^6.94/(g1^6*g2^6*g3^2*g4^10) + t^6.94/(g1^4*g2^12*g4^8) + (2*t^6.94)/(g1^8*g2^4*g3^4*g4^8) + t^6.94/(g1^6*g2^10*g3^2*g4^6) + (2*t^6.94)/(g1^8*g2^8*g3^4*g4^4) + (g2^3*g3^3*t^6.98)/(g1^5*g4^5) + (2*g3^3*t^6.98)/(g1^5*g2*g4) + (g3^3*g4^3*t^6.98)/(g1^5*g2^5) + (g3^7*t^6.99)/(g1*g2^5*g4^5) + (g3^5*t^6.99)/(g1^3*g2^3*g4^3) + t^7.02/(g1^12*g3^12) + t^7.02/(g1^10*g2^2*g3^10*g4^2) + t^7.03/(g1^2*g2^10*g3^2*g4^10) + (2*t^7.03)/(g1^4*g2^8*g3^4*g4^8) + (2*t^7.03)/(g1^6*g2^6*g3^6*g4^6) + (2*t^7.03)/(g1^8*g2^4*g3^8*g4^4) + t^7.04/(g2^12*g4^12) + (g2^7*t^7.08)/(g1^5*g3*g4^5) + (g3^3*t^7.08)/(g1*g2*g4^5) + (g2*g3*t^7.08)/(g1^3*g4^3) + (2*g2^3*t^7.08)/(g1^5*g3*g4) + (g3^3*t^7.08)/(g1*g2^5*g4) + (g3*g4*t^7.08)/(g1^3*g2^3) + (2*g4^3*t^7.08)/(g1^5*g2*g3) + (g4^7*t^7.08)/(g1^5*g2^5*g3) + g2^8*g3^8*t^7.13 + g2^4*g3^8*g4^4*t^7.13 + g3^8*g4^8*t^7.13 + (g2^3*t^7.17)/(g1*g3*g4^5) + (g2^5*t^7.17)/(g1^3*g3^3*g4^3) + (g1*g3*t^7.17)/(g2^3*g4^3) + (g2^7*t^7.17)/(g1^5*g3^5*g4) + t^7.17/(g1*g2*g3*g4) + (g2*g4*t^7.17)/(g1^3*g3^3) + (g2^3*g4^3*t^7.17)/(g1^5*g3^5) + (g4^3*t^7.17)/(g1*g2^5*g3) + (g4^5*t^7.17)/(g1^3*g2^3*g3^3) + (g4^7*t^7.17)/(g1^5*g2*g3^5) + (g1^3*g3^3*t^7.18)/(g2^5*g4^5) + (g1*g2*t^7.26)/(g3^3*g4^3) + (g1*g4*t^7.26)/(g2^3*g3^3) + (g1^3*t^7.27)/(g2*g3*g4^5) + (g1^3*t^7.27)/(g2^5*g3*g4) - g1^4*g2^4*g3^4*g4^4*t^7.31 + (g1^7*t^7.36)/(g2^5*g3*g4^5) + (g1^5*t^7.36)/(g2^3*g3^3*g4^3) + (g3^4*t^8.06)/(g1^8*g2^4) + (g2^4*g3^4*t^8.06)/(g1^8*g4^8) + (g3^4*t^8.06)/(g1^8*g4^4) + (g3^4*g4^4*t^8.06)/(g1^8*g2^8) + (g2^2*g3^2*t^8.16)/(g1^6*g4^6) - (g3^4*t^8.16)/(g1^4*g2^4*g4^4) + (g3^2*t^8.16)/(g1^6*g2^2*g4^2) + (g3^2*g4^2*t^8.16)/(g1^6*g2^6) + (g2^3*g3^11*t^8.21)/(g1*g4) + (g3^11*g4^3*t^8.21)/(g1*g2) - (4*t^8.25)/(g1^4*g2^4) - (g2^4*t^8.25)/(g1^4*g4^8) - (4*t^8.25)/(g1^4*g4^4) - (g4^4*t^8.25)/(g1^4*g2^8) + (g2^7*g3^7*t^8.3)/(g1*g4) - g1*g2*g3^9*g4*t^8.3 + (g2^3*g3^7*g4^3*t^8.3)/g1 + (g3^7*g4^7*t^8.3)/(g1*g2) - (5*t^8.34)/(g1^4*g3^4) - (g2^2*t^8.34)/(g1^2*g3^2*g4^6) - (2*g2^4*t^8.34)/(g1^4*g3^4*g4^4) - (4*t^8.34)/(g1^2*g2^2*g3^2*g4^2) - (g4^2*t^8.34)/(g1^2*g2^6*g3^2) - (2*g4^4*t^8.34)/(g1^4*g2^4*g3^4) - t^8.35/g2^8 - t^8.35/g4^8 - (5*t^8.35)/(g2^4*g4^4) + (g2^11*g3^3*t^8.39)/(g1*g4) - g1*g2^5*g3^5*g4*t^8.39 + (g2^7*g3^3*g4^3*t^8.39)/g1 - g1*g2*g3^5*g4^5*t^8.39 + (g2^3*g3^3*g4^7*t^8.39)/g1 + (g3^3*g4^11*t^8.39)/(g1*g2) - (g2^4*t^8.43)/(g1^4*g3^8) - (g2^2*t^8.43)/(g1^2*g3^6*g4^2) - (g4^2*t^8.43)/(g1^2*g2^2*g3^6) - (g4^4*t^8.43)/(g1^4*g3^8) - (2*t^8.44)/(g2^4*g3^4) - (g1^4*t^8.44)/(g2^4*g4^8) - (g1^2*t^8.44)/(g2^2*g3^2*g4^6) - (g1^4*t^8.44)/(g2^8*g4^4) - (2*t^8.44)/(g3^4*g4^4) - (g1^2*t^8.44)/(g2^6*g3^2*g4^2) - g1*g2^9*g3*g4*t^8.48 - g1*g2^5*g3*g4^5*t^8.48 - g1*g2*g3*g4^9*t^8.48 - g1^5*g2*g3^5*g4*t^8.49 - g1^3*g2^3*g3^3*g4^3*t^8.49 - (g1^4*t^8.53)/(g2^4*g3^4*g4^4) - (g1^2*t^8.53)/(g2^2*g3^6*g4^2) - g1^5*g2^5*g3*g4*t^8.58 - (g1^3*g2^7*g4^3*t^8.58)/g3 - g1^5*g2*g3*g4^5*t^8.58 - (g1^3*g2^3*g4^7*t^8.58)/g3 - g1^9*g2*g3*g4*t^8.67 - (g1^7*g2^3*g4^3*t^8.67)/g3 - t^4.17/(g1*g2*g3*g4*y) - t^6.42/(g1^5*g2*g3*g4^5*y) - t^6.42/(g1^5*g2^5*g3*g4*y) - t^6.51/(g1^3*g2^3*g3^3*g4^3*y) - t^6.51/(g1^5*g2*g3^5*g4*y) - t^6.52/(g1*g2^5*g3*g4^5*y) + t^7.5/(g1^8*g2^4*g4^4*y) + t^7.59/(g1^8*g2^4*g3^4*y) + t^7.59/(g1^4*g2^4*g4^8*y) + t^7.59/(g1^6*g2^2*g3^2*g4^6*y) + t^7.59/(g1^4*g2^8*g4^4*y) + t^7.59/(g1^8*g3^4*g4^4*y) + t^7.59/(g1^6*g2^6*g3^2*g4^2*y) + t^7.68/(g1^6*g2^2*g3^6*g4^2*y) + t^7.69/(g1^2*g2^6*g3^2*g4^6*y) + t^7.69/(g1^4*g2^4*g3^4*g4^4*y) + (g1^3*g3^3*t^7.83)/(g2*g4*y) + (g1*g2*g3*g4*t^7.83)/y + (g2^3*g4^3*t^7.83)/(g1*g3*y) + (g1^3*g2^3*t^7.92)/(g3*g4*y) + (g1^3*g4^3*t^7.92)/(g2*g3*y) - t^8.67/(g1^9*g2*g3*g4^9*y) - t^8.67/(g1^9*g2^5*g3*g4^5*y) - t^8.67/(g1^9*g2^9*g3*g4*y) - t^8.76/(g1^7*g2^3*g3^3*g4^7*y) - t^8.76/(g1^9*g2*g3^5*g4^5*y) - t^8.76/(g1^7*g2^7*g3^3*g4^3*y) - t^8.76/(g1^9*g2^5*g3^5*g4*y) - t^8.77/(g1^5*g2^5*g3*g4^9*y) - t^8.77/(g1^5*g2^9*g3*g4^5*y) + (2*g3^4*t^8.81)/(g1^4*y) + (g2^4*g3^4*t^8.81)/(g1^4*g4^4*y) + (g3^4*g4^4*t^8.81)/(g1^4*g2^4*y) - t^8.85/(g1^7*g2^3*g3^7*g4^3*y) - t^8.85/(g1^9*g2*g3^9*g4*y) - t^8.86/(g1*g2^9*g3*g4^9*y) - t^8.86/(g1^3*g2^7*g3^3*g4^7*y) - (2*t^8.86)/(g1^5*g2^5*g3^5*g4^5*y) + (g2^4*t^8.9)/(g1^4*y) + (g4^4*t^8.9)/(g1^4*y) + (g3^4*t^8.91)/(g2^4*y) + (g3^4*t^8.91)/(g4^4*y) + (g2^2*g3^2*t^8.91)/(g1^2*g4^2*y) + (g3^2*g4^2*t^8.91)/(g1^2*g2^2*y) - (t^4.17*y)/(g1*g2*g3*g4) - (t^6.42*y)/(g1^5*g2*g3*g4^5) - (t^6.42*y)/(g1^5*g2^5*g3*g4) - (t^6.51*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.51*y)/(g1^5*g2*g3^5*g4) - (t^6.52*y)/(g1*g2^5*g3*g4^5) + (t^7.5*y)/(g1^8*g2^4*g4^4) + (t^7.59*y)/(g1^8*g2^4*g3^4) + (t^7.59*y)/(g1^4*g2^4*g4^8) + (t^7.59*y)/(g1^6*g2^2*g3^2*g4^6) + (t^7.59*y)/(g1^4*g2^8*g4^4) + (t^7.59*y)/(g1^8*g3^4*g4^4) + (t^7.59*y)/(g1^6*g2^6*g3^2*g4^2) + (t^7.68*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.69*y)/(g1^2*g2^6*g3^2*g4^6) + (t^7.69*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^3*g3^3*t^7.83*y)/(g2*g4) + g1*g2*g3*g4*t^7.83*y + (g2^3*g4^3*t^7.83*y)/(g1*g3) + (g1^3*g2^3*t^7.92*y)/(g3*g4) + (g1^3*g4^3*t^7.92*y)/(g2*g3) - (t^8.67*y)/(g1^9*g2*g3*g4^9) - (t^8.67*y)/(g1^9*g2^5*g3*g4^5) - (t^8.67*y)/(g1^9*g2^9*g3*g4) - (t^8.76*y)/(g1^7*g2^3*g3^3*g4^7) - (t^8.76*y)/(g1^9*g2*g3^5*g4^5) - (t^8.76*y)/(g1^7*g2^7*g3^3*g4^3) - (t^8.76*y)/(g1^9*g2^5*g3^5*g4) - (t^8.77*y)/(g1^5*g2^5*g3*g4^9) - (t^8.77*y)/(g1^5*g2^9*g3*g4^5) + (2*g3^4*t^8.81*y)/g1^4 + (g2^4*g3^4*t^8.81*y)/(g1^4*g4^4) + (g3^4*g4^4*t^8.81*y)/(g1^4*g2^4) - (t^8.85*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.85*y)/(g1^9*g2*g3^9*g4) - (t^8.86*y)/(g1*g2^9*g3*g4^9) - (t^8.86*y)/(g1^3*g2^7*g3^3*g4^7) - (2*t^8.86*y)/(g1^5*g2^5*g3^5*g4^5) + (g2^4*t^8.9*y)/g1^4 + (g4^4*t^8.9*y)/g1^4 + (g3^4*t^8.91*y)/g2^4 + (g3^4*t^8.91*y)/g4^4 + (g2^2*g3^2*t^8.91*y)/(g1^2*g4^2) + (g3^2*g4^2*t^8.91*y)/(g1^2*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46032 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ 0.7126 0.866 0.8228 [X:[], M:[1.0, 0.9022, 1.0, 0.9171], q:[0.4586, 0.5414], qb:[0.6393, 0.5414], phi:[0.4548]] t^2.71 + t^2.73 + t^2.75 + 2*t^3. + 2*t^3.54 + t^4.12 + 2*t^4.36 + 3*t^4.61 + t^4.66 + 2*t^4.91 + t^5.2 + t^5.41 + t^5.44 + t^5.46 + t^5.48 + t^5.5 + 2*t^5.73 - 3*t^6. - t^4.36/y - t^4.36*y detail
45964 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3q_2\tilde{q}_1$ 0.7729 0.9519 0.812 [X:[], M:[0.7473, 0.7777, 0.7777, 0.7777], q:[0.6263, 0.6263], qb:[0.596, 0.596], phi:[0.3888]] t^2.24 + 4*t^2.33 + t^3.58 + t^3.67 + t^4.48 + 4*t^4.57 + 10*t^4.67 + 3*t^4.74 + 4*t^4.83 + 3*t^4.92 + t^5.82 + t^5.91 - 4*t^6. - t^4.17/y - t^4.17*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45843 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.7577 0.9271 0.8174 [X:[], M:[0.7655, 0.7655, 0.7655], q:[0.6539, 0.5806], qb:[0.5806, 0.5806], phi:[0.4011]] 3*t^2.3 + t^2.41 + 3*t^3.48 + 6*t^4.59 + 6*t^4.69 + 3*t^4.7 + t^4.81 + 3*t^4.91 + t^5.13 + 6*t^5.78 + 3*t^5.89 - 10*t^6. - t^4.2/y - t^4.2*y detail