Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
365 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ | 0.7284 | 0.8958 | 0.8131 | [M:[0.9752, 0.8187, 1.0248, 0.7691, 0.9752], q:[0.4541, 0.5707], qb:[0.5212, 0.6602], phi:[0.4485]] | [M:[[-4, 4, 0], [0, -8, -4], [4, -4, 0], [-8, 0, -4], [-4, 4, 0]], q:[[-4, -4, 0], [8, 0, 0]], qb:[[0, 8, 0], [0, 0, 4]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | ${}$ | -4 | t^2.307 + t^2.456 + t^2.691 + 2*t^2.926 + t^3.276 + t^3.343 + t^4.07 + t^4.271 + t^4.42 + t^4.472 + t^4.615 + t^4.621 + t^4.688 + t^4.763 + t^4.77 + t^4.889 + t^4.912 + t^4.998 + t^5.038 + t^5.147 + 2*t^5.233 + t^5.306 + 2*t^5.382 + 2*t^5.616 + 2*t^5.851 + t^5.967 - 4*t^6. + t^6.033 - t^6.149 + t^6.201 + t^6.268 - t^6.35 + t^6.377 - t^6.417 + t^6.526 + t^6.551 + t^6.578 - t^6.618 + t^6.685 + t^6.727 + t^6.761 + t^6.78 + t^6.876 + t^6.922 + t^6.928 + t^6.962 + 2*t^6.995 + t^7.071 + t^7.077 + t^7.111 + t^7.163 + 2*t^7.197 + t^7.219 + t^7.226 + t^7.305 + t^7.312 + t^7.345 + t^7.368 + 2*t^7.398 + t^7.412 + t^7.454 + t^7.461 + 2*t^7.54 + t^7.547 + t^7.603 + 2*t^7.614 + 2*t^7.689 + t^7.695 + t^7.748 - t^7.782 + 2*t^7.815 + 2*t^7.838 + t^7.897 + 2*t^7.924 - t^7.93 + t^8.031 + t^8.046 + 2*t^8.073 - t^8.079 - t^8.106 + t^8.139 + 2*t^8.159 - t^8.199 + 2*t^8.232 - t^8.307 + t^8.341 - t^8.347 - 4*t^8.456 + t^8.49 - t^8.509 + 3*t^8.542 - t^8.605 - t^8.616 + t^8.649 + t^8.684 - 3*t^8.691 - t^8.724 + t^8.743 + t^8.758 + 2*t^8.777 - t^8.806 + t^8.833 + t^8.886 + 2*t^8.892 - 9*t^8.926 + t^8.945 + 2*t^8.959 + t^8.982 - t^4.345/y - t^6.653/y - t^6.801/y - t^7.036/y - t^7.271/y + t^7.42/y + t^7.655/y + t^7.763/y + t^7.889/y + t^7.998/y + t^8.038/y + t^8.147/y + (2*t^8.233)/y + (2*t^8.382)/y + t^8.583/y + (2*t^8.616)/y + t^8.65/y + t^8.732/y + t^8.799/y + t^8.851/y - t^8.96/y + t^8.967/y - t^4.345*y - t^6.653*y - t^6.801*y - t^7.036*y - t^7.271*y + t^7.42*y + t^7.655*y + t^7.763*y + t^7.889*y + t^7.998*y + t^8.038*y + t^8.147*y + 2*t^8.233*y + 2*t^8.382*y + t^8.583*y + 2*t^8.616*y + t^8.65*y + t^8.732*y + t^8.799*y + t^8.851*y - t^8.96*y + t^8.967*y | t^2.307/(g1^8*g3^4) + t^2.456/(g2^8*g3^4) + t^2.691/(g1^2*g2^2*g3^2) + (2*g2^4*t^2.926)/g1^4 + g1^8*g2^8*t^3.276 + (g3^4*t^3.343)/(g1^4*g2^4) + t^4.07/(g1^9*g2^9*g3) + (g2^3*t^4.271)/(g1^5*g3) + (g1^3*t^4.42)/(g2^5*g3) + (g2^15*t^4.472)/(g1*g3) + t^4.615/(g1^16*g3^8) + (g1^7*g2^7*t^4.621)/g3 + (g3^3*t^4.688)/(g1^5*g2^5) + t^4.763/(g1^8*g2^8*g3^8) + (g1^15*t^4.77)/(g2*g3) + (g2^7*g3^3*t^4.889)/g1 + t^4.912/(g2^16*g3^8) + t^4.998/(g1^10*g2^2*g3^6) + (g1^7*g3^3*t^5.038)/g2 + t^5.147/(g1^2*g2^10*g3^6) + (2*g2^4*t^5.233)/(g1^12*g3^4) + (g3^7*t^5.306)/(g1*g2) + (2*t^5.382)/(g1^4*g2^4*g3^4) + (2*g2^2*t^5.616)/(g1^6*g3^2) + (2*g2^8*t^5.851)/g1^8 + (g1^6*g2^6*t^5.967)/g3^2 - 4*t^6. + (g3^2*t^6.033)/(g1^6*g2^6) - (g1^8*t^6.149)/g2^8 + g1^4*g2^12*t^6.201 + (g3^4*t^6.268)/g1^8 - g1^12*g2^4*t^6.35 + t^6.377/(g1^17*g2^9*g3^5) - (g3^4*t^6.417)/g2^8 + t^6.526/(g1^9*g2^17*g3^5) + g1^16*g2^16*t^6.551 + (g2^3*t^6.578)/(g1^13*g3^5) - g1^4*g2^4*g3^4*t^6.618 + (g3^8*t^6.685)/(g1^8*g2^8) + t^6.727/(g1^5*g2^5*g3^5) + t^6.761/(g1^11*g2^11*g3^3) + (g2^15*t^6.78)/(g1^9*g3^5) + (g1^3*t^6.876)/(g2^13*g3^5) + t^6.922/(g1^24*g3^12) + (g2^7*t^6.928)/(g1*g3^5) + (g2*t^6.962)/(g1^7*g3^3) + (2*t^6.995)/(g1^13*g2^5*g3) + t^7.071/(g1^16*g2^8*g3^12) + (g1^7*t^7.077)/(g2*g3^5) + (g1*t^7.111)/(g2^7*g3^3) + (g2^13*t^7.163)/(g1^3*g3^3) + (2*g2^7*t^7.197)/(g1^9*g3) + t^7.219/(g1^8*g2^16*g3^12) + (g1^15*t^7.226)/(g2^9*g3^5) + t^7.305/(g1^18*g2^2*g3^10) + (g1^5*g2^5*t^7.312)/g3^3 + t^7.345/(g1*g2*g3) + t^7.368/(g2^24*g3^12) + (2*g2^19*t^7.398)/(g1^5*g3) + (g3^3*t^7.412)/(g1^13*g2^13) + t^7.454/(g1^10*g2^10*g3^10) + (g1^13*t^7.461)/(g2^3*g3^3) + (2*g2^4*t^7.54)/(g1^20*g3^8) + (g1^3*g2^11*t^7.547)/g3 + t^7.603/(g1^2*g2^18*g3^10) + (2*g3^3*t^7.614)/(g1^9*g2) + (2*t^7.689)/(g1^12*g2^4*g3^8) + (g1^11*g2^3*t^7.695)/g3 + (g1^7*g2^23*t^7.748)/g3 - g1*g2^17*g3*t^7.782 + (2*g2^11*g3^3*t^7.815)/g1^5 + (2*t^7.838)/(g1^4*g2^12*g3^8) + (g1^15*g2^15*t^7.897)/g3 + (2*g2^2*t^7.924)/(g1^14*g3^6) - g1^9*g2^9*g3*t^7.93 + (g3^7*t^8.031)/(g1^9*g2^9) + (g1^23*g2^7*t^8.046)/g3 + (2*t^8.073)/(g1^6*g2^6*g3^6) - g1^17*g2*g3*t^8.079 - t^8.106/(g1^12*g2^12*g3^4) + t^8.139/(g1^18*g2^18*g3^2) + (2*g2^8*t^8.159)/(g1^16*g3^4) - g1*g2^9*g3^5*t^8.199 + (2*g2^3*g3^7*t^8.232)/g1^5 - t^8.307/(g1^8*g3^4) + t^8.341/(g1^14*g2^6*g3^2) - g1^9*g2*g3^5*t^8.347 - (4*t^8.456)/(g2^8*g3^4) + t^8.49/(g1^6*g2^14*g3^2) - (g2^12*t^8.509)/(g1^4*g3^4) + (3*g2^6*t^8.542)/(g1^10*g3^2) - (g1^8*t^8.605)/(g2^16*g3^4) - g1*g2*g3^9*t^8.616 + (g3^11*t^8.649)/(g1^5*g2^5) + t^8.684/(g1^25*g2^9*g3^9) - (3*t^8.691)/(g1^2*g2^2*g3^2) - t^8.724/(g1^8*g2^8) + (g2^18*t^8.743)/(g1^6*g3^2) + (g3^2*t^8.758)/(g1^14*g2^14) + (2*g2^12*t^8.777)/g1^12 - (g1^12*t^8.806)/(g2^4*g3^4) + t^8.833/(g1^17*g2^17*g3^9) + (g2^3*t^8.886)/(g1^21*g3^9) + (2*g1^2*g2^10*t^8.892)/g3^2 - (9*g2^4*t^8.926)/g1^4 + (g2^30*t^8.945)/(g1^2*g3^2) + (2*g3^2*t^8.959)/(g1^10*g2^2) + t^8.982/(g1^9*g2^25*g3^9) - t^4.345/(g1*g2*g3*y) - t^6.653/(g1^9*g2*g3^5*y) - t^6.801/(g1*g2^9*g3^5*y) - t^7.036/(g1^3*g2^3*g3^3*y) - (g2^3*t^7.271)/(g1^5*g3*y) + (g1^3*t^7.42)/(g2^5*g3*y) + (g1*g2*g3*t^7.655)/y + t^7.763/(g1^8*g2^8*g3^8*y) + (g2^7*g3^3*t^7.889)/(g1*y) + t^7.998/(g1^10*g2^2*g3^6*y) + (g1^7*g3^3*t^8.038)/(g2*y) + t^8.147/(g1^2*g2^10*g3^6*y) + (2*g2^4*t^8.233)/(g1^12*g3^4*y) + (2*t^8.382)/(g1^4*g2^4*g3^4*y) + (g2^8*t^8.583)/(g3^4*y) + (2*g2^2*t^8.616)/(g1^6*g3^2*y) + t^8.65/(g1^12*g2^4*y) + (g1^8*t^8.732)/(g3^4*y) + t^8.799/(g1^4*g2^12*y) + (g2^8*t^8.851)/(g1^8*y) - t^8.96/(g1^17*g2*g3^9*y) + (g1^6*g2^6*t^8.967)/(g3^2*y) - (t^4.345*y)/(g1*g2*g3) - (t^6.653*y)/(g1^9*g2*g3^5) - (t^6.801*y)/(g1*g2^9*g3^5) - (t^7.036*y)/(g1^3*g2^3*g3^3) - (g2^3*t^7.271*y)/(g1^5*g3) + (g1^3*t^7.42*y)/(g2^5*g3) + g1*g2*g3*t^7.655*y + (t^7.763*y)/(g1^8*g2^8*g3^8) + (g2^7*g3^3*t^7.889*y)/g1 + (t^7.998*y)/(g1^10*g2^2*g3^6) + (g1^7*g3^3*t^8.038*y)/g2 + (t^8.147*y)/(g1^2*g2^10*g3^6) + (2*g2^4*t^8.233*y)/(g1^12*g3^4) + (2*t^8.382*y)/(g1^4*g2^4*g3^4) + (g2^8*t^8.583*y)/g3^4 + (2*g2^2*t^8.616*y)/(g1^6*g3^2) + (t^8.65*y)/(g1^12*g2^4) + (g1^8*t^8.732*y)/g3^4 + (t^8.799*y)/(g1^4*g2^12) + (g2^8*t^8.851*y)/g1^8 - (t^8.96*y)/(g1^17*g2*g3^9) + (g1^6*g2^6*t^8.967*y)/g3^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
580 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.7035 | 0.8668 | 0.8116 | [M:[0.9248, 1.0251, 1.0752, 0.8746, 0.9248], q:[0.4849, 0.5904], qb:[0.4399, 0.535], phi:[0.4875]] | t^2.624 + 2*t^2.774 + t^2.925 + t^3.06 + t^3.075 + t^3.091 + t^4.102 + t^4.237 + t^4.372 + t^4.387 + t^4.522 + t^4.553 + t^4.673 + t^4.688 + t^4.839 + t^5.005 + t^5.248 + 2*t^5.398 + 3*t^5.549 + 3*t^5.699 + t^5.834 + 2*t^5.85 + t^5.865 + t^5.985 - 3*t^6. - t^4.462/y - t^4.462*y | detail | |
1814 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ | 0.6348 | 0.784 | 0.8097 | [X:[1.6126], M:[0.8379, 0.7117, 1.1621, 0.3874, 0.8379], q:[0.4032, 0.759], qb:[0.4347, 0.8536], phi:[0.3874]] | t^2.135 + t^2.324 + 2*t^2.514 + 2*t^3.581 + t^3.676 + 2*t^3.77 + t^4.27 + t^4.459 + 3*t^4.649 + 3*t^4.838 + 3*t^5.027 + 2*t^5.716 + 2*t^5.905 - 2*t^6. - t^4.162/y - t^4.162*y | detail | |
1815 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ | 0.7133 | 0.8853 | 0.8057 | [M:[0.9782, 0.7152, 1.0218, 0.6716, 0.9782], q:[0.4817, 0.5401], qb:[0.4965, 0.7883], phi:[0.4234]] | t^2.015 + t^2.146 + t^2.54 + 2*t^2.935 + t^3.11 + t^3.81 + t^4.03 + 2*t^4.16 + t^4.205 + t^4.249 + t^4.291 + t^4.335 + t^4.38 + t^4.51 + t^4.555 + t^4.686 + 2*t^4.95 + 3*t^5.08 + t^5.125 + t^5.255 + 2*t^5.475 + t^5.65 + 2*t^5.869 - 3*t^6. - t^4.27/y - t^4.27*y | detail | |
579 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | 0.7283 | 0.8957 | 0.8131 | [M:[0.9749, 0.82, 1.0251, 0.7699, 0.9749], q:[0.4487, 0.5763], qb:[0.5262, 0.6538], phi:[0.4487]] | t^2.31 + t^2.46 + t^2.692 + 2*t^2.925 + 2*t^3.308 + t^4.039 + t^4.271 + t^4.421 + t^4.503 + t^4.62 + 2*t^4.654 + t^4.77 + t^4.804 + t^4.886 + t^4.92 + t^5.002 + t^5.036 + t^5.153 + 2*t^5.235 + t^5.269 + 2*t^5.385 + 2*t^5.617 + 2*t^5.85 - 2*t^6. - t^4.346/y - t^4.346*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
228 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ | 0.7272 | 0.8931 | 0.8142 | [M:[1.0, 0.7935, 1.0, 0.7935], q:[0.4543, 0.5457], qb:[0.5457, 0.6608], phi:[0.4484]] | 2*t^2.381 + t^2.69 + 2*t^3. + t^3.274 + t^3.345 + t^4.071 + 2*t^4.345 + 3*t^4.619 + t^4.69 + 3*t^4.761 + 2*t^4.965 + 2*t^5.071 + t^5.31 + 4*t^5.381 + 2*t^5.69 + t^5.964 - 3*t^6. - t^4.345/y - t^4.345*y | detail |