Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
580 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.7035 | 0.8668 | 0.8116 | [M:[0.9248, 1.0251, 1.0752, 0.8746, 0.9248], q:[0.4849, 0.5904], qb:[0.4399, 0.535], phi:[0.4875]] | [M:[[6, 6], [-2, -2], [-6, -6], [10, 10], [6, 6]], q:[[4, 6], [-10, -12]], qb:[[2, 0], [0, 2]], phi:[[1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.624 + 2*t^2.774 + t^2.925 + t^3.06 + t^3.075 + t^3.091 + t^4.102 + t^4.237 + t^4.372 + t^4.387 + t^4.522 + t^4.553 + t^4.673 + t^4.688 + t^4.839 + t^5.005 + t^5.248 + 2*t^5.398 + 3*t^5.549 + 3*t^5.699 + t^5.834 + 2*t^5.85 + t^5.865 + t^5.985 - 3*t^6. + t^6.015 + t^6.12 + t^6.181 - t^6.286 - t^6.316 - t^6.451 + t^6.725 + t^6.86 + 2*t^6.876 + t^6.995 + 2*t^7.011 + t^7.026 + 2*t^7.146 + 3*t^7.161 + t^7.192 + 3*t^7.296 + t^7.312 + t^7.327 + t^7.431 + 3*t^7.447 + t^7.478 + t^7.582 + t^7.613 + t^7.644 + t^7.732 - t^7.748 + t^7.763 + t^7.779 + t^7.871 - t^7.914 + t^7.929 + 2*t^8.022 + t^8.095 + 3*t^8.172 + t^8.203 + 5*t^8.323 + t^8.338 + 5*t^8.473 + 2*t^8.608 + t^8.624 + t^8.655 + t^8.743 + t^8.759 - 5*t^8.774 + 2*t^8.79 + 2*t^8.894 - 4*t^8.925 + t^8.94 + t^8.956 - t^4.462/y - t^7.086/y - t^7.237/y + t^7.688/y + t^7.839/y + (2*t^8.398)/y + (2*t^8.549)/y + t^8.684/y + (3*t^8.699)/y + t^8.714/y + (2*t^8.834)/y + (2*t^8.85)/y + (2*t^8.865)/y + t^8.985/y - t^4.462*y - t^7.086*y - t^7.237*y + t^7.688*y + t^7.839*y + 2*t^8.398*y + 2*t^8.549*y + t^8.684*y + 3*t^8.699*y + t^8.714*y + 2*t^8.834*y + 2*t^8.85*y + 2*t^8.865*y + t^8.985*y | g1^10*g2^10*t^2.624 + 2*g1^6*g2^6*t^2.774 + g1^2*g2^2*t^2.925 + g1^4*g2^8*t^3.06 + t^3.075/(g1^2*g2^2) + t^3.091/(g1^8*g2^12) + g1^5*g2*t^4.102 + g1^7*g2^7*t^4.237 + g1^9*g2^13*t^4.372 + g1^3*g2^3*t^4.387 + g1^5*g2^9*t^4.522 + t^4.553/(g1^7*g2^11) + g1*g2^5*t^4.673 + t^4.688/(g1^5*g2^5) + t^4.839/(g1^9*g2^9) + t^5.005/(g1^19*g2^23) + g1^20*g2^20*t^5.248 + 2*g1^16*g2^16*t^5.398 + 3*g1^12*g2^12*t^5.549 + 3*g1^8*g2^8*t^5.699 + g1^10*g2^14*t^5.834 + 2*g1^4*g2^4*t^5.85 + t^5.865/(g1^2*g2^6) + g1^6*g2^10*t^5.985 - 3*t^6. + t^6.015/(g1^6*g2^10) + g1^8*g2^16*t^6.12 + t^6.181/(g1^16*g2^24) - (g2^2*t^6.286)/g1^2 - t^6.316/(g1^14*g2^18) - t^6.451/(g1^12*g2^12) + g1^15*g2^11*t^6.725 + g1^17*g2^17*t^6.86 + 2*g1^11*g2^7*t^6.876 + g1^19*g2^23*t^6.995 + 2*g1^13*g2^13*t^7.011 + g1^7*g2^3*t^7.026 + 2*g1^15*g2^19*t^7.146 + 3*g1^9*g2^9*t^7.161 + t^7.192/(g1^3*g2^11) + 3*g1^11*g2^15*t^7.296 + g1^5*g2^5*t^7.312 + t^7.327/(g1*g2^5) + g1^13*g2^21*t^7.431 + 3*g1^7*g2^11*t^7.447 + t^7.478/(g1^5*g2^9) + g1^9*g2^17*t^7.582 + t^7.613/(g1^3*g2^3) + t^7.644/(g1^15*g2^23) + g1^5*g2^13*t^7.732 - (g2^3*t^7.748)/g1 + t^7.763/(g1^7*g2^7) + t^7.779/(g1^13*g2^17) + g1^30*g2^30*t^7.871 - t^7.914/(g1^11*g2^11) + t^7.929/(g1^17*g2^21) + 2*g1^26*g2^26*t^8.022 + t^8.095/(g1^27*g2^35) + 3*g1^22*g2^22*t^8.172 + g1^10*g2^2*t^8.203 + 5*g1^18*g2^18*t^8.323 + g1^12*g2^8*t^8.338 + 5*g1^14*g2^14*t^8.473 + 2*g1^16*g2^20*t^8.608 + g1^10*g2^10*t^8.624 + t^8.655/(g1^2*g2^10) + g1^18*g2^26*t^8.743 + g1^12*g2^16*t^8.759 - 5*g1^6*g2^6*t^8.774 + (2*t^8.79)/g2^4 + 2*g1^14*g2^22*t^8.894 - 4*g1^2*g2^2*t^8.925 + t^8.94/(g1^4*g2^8) + t^8.956/(g1^10*g2^18) - (g1*g2*t^4.462)/y - (g1^11*g2^11*t^7.086)/y - (g1^7*g2^7*t^7.237)/y + t^7.688/(g1^5*g2^5*y) + t^7.839/(g1^9*g2^9*y) + (2*g1^16*g2^16*t^8.398)/y + (2*g1^12*g2^12*t^8.549)/y + (g1^14*g2^18*t^8.684)/y + (3*g1^8*g2^8*t^8.699)/y + (g1^2*t^8.714)/(g2^2*y) + (2*g1^10*g2^14*t^8.834)/y + (2*g1^4*g2^4*t^8.85)/y + (2*t^8.865)/(g1^2*g2^6*y) + (g1^6*g2^10*t^8.985)/y - g1*g2*t^4.462*y - g1^11*g2^11*t^7.086*y - g1^7*g2^7*t^7.237*y + (t^7.688*y)/(g1^5*g2^5) + (t^7.839*y)/(g1^9*g2^9) + 2*g1^16*g2^16*t^8.398*y + 2*g1^12*g2^12*t^8.549*y + g1^14*g2^18*t^8.684*y + 3*g1^8*g2^8*t^8.699*y + (g1^2*t^8.714*y)/g2^2 + 2*g1^10*g2^14*t^8.834*y + 2*g1^4*g2^4*t^8.85*y + (2*t^8.865*y)/(g1^2*g2^6) + g1^6*g2^10*t^8.985*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
898 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{6}$ | 0.7059 | 0.8716 | 0.8099 | [M:[0.9177, 1.0274, 1.0823, 0.8628, 0.9177, 0.9726], q:[0.4832, 0.5991], qb:[0.4345, 0.5381], phi:[0.4863]] | t^2.588 + 2*t^2.753 + 2*t^2.918 + t^3.064 + t^3.101 + t^4.066 + t^4.212 + t^4.358 + t^4.377 + t^4.523 + t^4.56 + t^4.687 + t^4.706 + t^4.87 + t^5.054 + t^5.177 + 2*t^5.342 + 4*t^5.506 + 4*t^5.671 + t^5.817 + 2*t^5.835 + t^5.854 + 2*t^5.981 - 4*t^6. - t^4.459/y - t^4.459*y | detail | |
896 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.7014 | 0.8635 | 0.8123 | [M:[0.9379, 1.0207, 1.0621, 0.8965, 0.9379], q:[0.5103, 0.5517], qb:[0.4276, 0.5517], phi:[0.4897]] | t^2.69 + 2*t^2.814 + 2*t^2.938 + t^3.062 + t^3.186 + t^4.034 + t^4.283 + 2*t^4.407 + t^4.531 + 2*t^4.655 + 3*t^4.779 + t^5.379 + 2*t^5.503 + 3*t^5.627 + 4*t^5.752 + 4*t^5.876 - 2*t^6. - t^4.469/y - t^4.469*y | detail | |
899 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ | 0.702 | 0.8645 | 0.812 | [M:[0.933, 1.0223, 1.067, 0.8883, 0.933], q:[0.4665, 0.6005], qb:[0.4665, 0.5112], phi:[0.4888]] | t^2.665 + 2*t^2.799 + 2*t^2.933 + t^3.067 + t^3.201 + 3*t^4.265 + 2*t^4.399 + t^4.534 + 2*t^4.668 + t^4.802 + t^5.07 + t^5.33 + 2*t^5.464 + 3*t^5.598 + 4*t^5.732 + 4*t^5.866 - 2*t^6. - t^4.466/y - t^4.466*y | detail | |
900 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ | 0.7013 | 0.8625 | 0.8131 | [M:[0.9319, 1.0227, 1.0681, 0.8864, 0.9319, 1.0227], q:[0.4865, 0.5816], qb:[0.4453, 0.532], phi:[0.4886]] | t^2.659 + 2*t^2.796 + t^3.055 + 2*t^3.068 + t^3.081 + t^4.138 + t^4.262 + t^4.385 + t^4.398 + t^4.521 + t^4.547 + t^4.658 + t^4.67 + t^4.807 + t^4.956 + t^5.319 + 2*t^5.455 + 2*t^5.591 + 2*t^5.727 + t^5.851 + 3*t^5.864 + t^5.876 - 4*t^6. - t^4.466/y - t^4.466*y | detail | |
1918 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ | 0.6746 | 0.8467 | 0.7967 | [M:[0.831, 1.0563, 1.169, 0.7183, 0.831], q:[0.4049, 0.7641], qb:[0.426, 0.5176], phi:[0.4718]] | t^2.155 + 2*t^2.493 + t^2.768 + t^2.831 + t^3.169 + t^3.57 + t^3.845 + t^3.908 + t^3.972 + t^4.183 + t^4.246 + t^4.31 + t^4.521 + 2*t^4.648 + t^4.923 + 4*t^4.986 + 2*t^5.261 + 3*t^5.324 + t^5.535 + t^5.599 + 2*t^5.662 - t^6. - t^4.415/y - t^4.415*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
365 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ | 0.7284 | 0.8958 | 0.8131 | [M:[0.9752, 0.8187, 1.0248, 0.7691, 0.9752], q:[0.4541, 0.5707], qb:[0.5212, 0.6602], phi:[0.4485]] | t^2.307 + t^2.456 + t^2.691 + 2*t^2.926 + t^3.276 + t^3.343 + t^4.07 + t^4.271 + t^4.42 + t^4.472 + t^4.615 + t^4.621 + t^4.688 + t^4.763 + t^4.77 + t^4.889 + t^4.912 + t^4.998 + t^5.038 + t^5.147 + 2*t^5.233 + t^5.306 + 2*t^5.382 + 2*t^5.616 + 2*t^5.851 + t^5.967 - 4*t^6. - t^4.345/y - t^4.345*y | detail |