Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46205 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{3}M_{5}$ 0.7284 0.8958 0.8131 [M:[0.7691, 0.8187, 1.0248, 0.9752, 0.9752], q:[0.6602, 0.5707], qb:[0.5212, 0.4541], phi:[0.4485]] [M:[[-4, 1, 8], [-4, -1, 0], [0, -1, -4], [0, 1, 4], [0, 1, 4]], q:[[4, 0, 0], [0, -1, -8]], qb:[[0, 1, 0], [0, 0, 4]], phi:[[-1, 0, 1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ ${}$ -4 t^2.307 + t^2.456 + t^2.691 + 2*t^2.926 + t^3.276 + t^3.343 + t^4.07 + t^4.271 + t^4.42 + t^4.472 + t^4.615 + t^4.621 + t^4.688 + t^4.763 + t^4.77 + t^4.889 + t^4.912 + t^4.998 + t^5.038 + t^5.147 + 2*t^5.233 + t^5.306 + 2*t^5.382 + 2*t^5.616 + 2*t^5.851 + t^5.967 - 4*t^6. + t^6.033 - t^6.149 + t^6.201 + t^6.268 - t^6.35 + t^6.377 - t^6.417 + t^6.526 + t^6.551 + t^6.578 - t^6.618 + t^6.685 + t^6.727 + t^6.761 + t^6.78 + t^6.876 + t^6.922 + t^6.928 + t^6.962 + 2*t^6.995 + t^7.071 + t^7.077 + t^7.111 + t^7.163 + 2*t^7.197 + t^7.219 + t^7.226 + t^7.305 + t^7.312 + t^7.345 + t^7.368 + 2*t^7.398 + t^7.412 + t^7.454 + t^7.461 + 2*t^7.54 + t^7.547 + t^7.603 + 2*t^7.614 + 2*t^7.689 + t^7.695 + t^7.748 - t^7.782 + 2*t^7.815 + 2*t^7.838 + t^7.897 + 2*t^7.924 - t^7.93 + t^8.031 + t^8.046 + 2*t^8.073 - t^8.079 - t^8.106 + t^8.139 + 2*t^8.159 - t^8.199 + 2*t^8.232 - t^8.307 + t^8.341 - t^8.347 - 4*t^8.456 + t^8.49 - t^8.509 + 3*t^8.542 - t^8.605 - t^8.616 + t^8.649 + t^8.684 - 3*t^8.691 - t^8.724 + t^8.743 + t^8.758 + 2*t^8.777 - t^8.806 + t^8.833 + t^8.886 + 2*t^8.892 - 9*t^8.926 + t^8.945 + 2*t^8.959 + t^8.982 - t^4.345/y - t^6.653/y - t^6.801/y - t^7.036/y - t^7.271/y + t^7.42/y + t^7.655/y + t^7.763/y + t^7.889/y + t^7.998/y + t^8.038/y + t^8.147/y + (2*t^8.233)/y + (2*t^8.382)/y + t^8.583/y + (2*t^8.616)/y + t^8.65/y + t^8.732/y + t^8.799/y + t^8.851/y - t^8.96/y + t^8.967/y - t^4.345*y - t^6.653*y - t^6.801*y - t^7.036*y - t^7.271*y + t^7.42*y + t^7.655*y + t^7.763*y + t^7.889*y + t^7.998*y + t^8.038*y + t^8.147*y + 2*t^8.233*y + 2*t^8.382*y + t^8.583*y + 2*t^8.616*y + t^8.65*y + t^8.732*y + t^8.799*y + t^8.851*y - t^8.96*y + t^8.967*y (g2*g3^8*t^2.307)/g1^4 + t^2.456/(g1^4*g2) + (g3^2*t^2.691)/g1^2 + 2*g2*g3^4*t^2.926 + t^3.276/g3^8 + g1^4*g3^4*t^3.343 + (g3^9*t^4.07)/g1 + (g2*g3^5*t^4.271)/g1 + t^4.42/(g1*g2*g3^3) + (g2^2*g3*t^4.472)/g1 + (g2^2*g3^16*t^4.615)/g1^8 + t^4.621/(g1*g3^7) + g1^3*g3^5*t^4.688 + (g3^8*t^4.763)/g1^8 + t^4.77/(g1*g2^2*g3^15) + g1^3*g2*g3*t^4.889 + t^4.912/(g1^8*g2^2) + (g2*g3^10*t^4.998)/g1^6 + (g1^3*t^5.038)/(g2*g3^7) + (g3^2*t^5.147)/(g1^6*g2) + (2*g2^2*g3^12*t^5.233)/g1^4 + g1^7*g3*t^5.306 + (2*g3^4*t^5.382)/g1^4 + (2*g2*g3^6*t^5.616)/g1^2 + 2*g2^2*g3^8*t^5.851 + t^5.967/(g1^2*g3^6) - 4*t^6. + g1^2*g3^6*t^6.033 - t^6.149/(g2^2*g3^8) + (g2*t^6.201)/g3^4 + g1^4*g2*g3^8*t^6.268 - t^6.35/(g2*g3^12) + (g2*g3^17*t^6.377)/g1^5 - (g1^4*t^6.417)/g2 + (g3^9*t^6.526)/(g1^5*g2) + t^6.551/g3^16 + (g2^2*g3^13*t^6.578)/g1^5 - (g1^4*t^6.618)/g3^4 + g1^8*g3^8*t^6.685 + (g3^5*t^6.727)/g1^5 + (g3^11*t^6.761)/g1^3 + (g2^3*g3^9*t^6.78)/g1^5 + t^6.876/(g1^5*g2^2*g3^3) + (g2^3*g3^24*t^6.922)/g1^12 + (g2*g3*t^6.928)/g1^5 + (g2*g3^7*t^6.962)/g1^3 + (2*g2*g3^13*t^6.995)/g1 + (g2*g3^16*t^7.071)/g1^12 + t^7.077/(g1^5*g2*g3^7) + t^7.111/(g1^3*g2*g3) + (g2^2*g3^3*t^7.163)/g1^3 + (2*g2^2*g3^9*t^7.197)/g1 + (g3^8*t^7.219)/(g1^12*g2) + t^7.226/(g1^5*g2^3*g3^15) + (g2^2*g3^18*t^7.305)/g1^10 + t^7.312/(g1^3*g3^5) + (g3*t^7.345)/g1 + t^7.368/(g1^12*g2^3) + (2*g2^3*g3^5*t^7.398)/g1 + g1^3*g3^13*t^7.412 + (g3^10*t^7.454)/g1^10 + t^7.461/(g1^3*g2^2*g3^13) + (2*g2^3*g3^20*t^7.54)/g1^8 + (g2*t^7.547)/(g1*g3^3) + (g3^2*t^7.603)/(g1^10*g2^2) + 2*g1^3*g2*g3^9*t^7.614 + (2*g2*g3^12*t^7.689)/g1^8 + t^7.695/(g1*g2*g3^11) + (g2^2*t^7.748)/(g1*g3^7) - (g1*g2^2*t^7.782)/g3 + 2*g1^3*g2^2*g3^5*t^7.815 + (2*g3^4*t^7.838)/(g1^8*g2) + t^7.897/(g1*g3^15) + (2*g2^2*g3^14*t^7.924)/g1^6 - (g1*t^7.93)/g3^9 + g1^7*g3^9*t^8.031 + t^8.046/(g1*g2^2*g3^23) + (2*g3^6*t^8.073)/g1^6 - (g1*t^8.079)/(g2^2*g3^17) - (g3^12*t^8.106)/g1^4 + (g3^18*t^8.139)/g1^2 + (2*g2^3*g3^16*t^8.159)/g1^4 - (g1^5*g2*t^8.199)/g3 + 2*g1^7*g2*g3^5*t^8.232 - (g2*g3^8*t^8.307)/g1^4 + (g2*g3^14*t^8.341)/g1^2 - (g1^5*t^8.347)/(g2*g3^9) - (4*t^8.456)/(g1^4*g2) + (g3^6*t^8.49)/(g1^2*g2) - (g2^2*g3^4*t^8.509)/g1^4 + (3*g2^2*g3^10*t^8.542)/g1^2 - t^8.605/(g1^4*g2^3*g3^8) - (g1^9*t^8.616)/g3 + g1^11*g3^5*t^8.649 + (g2^2*g3^25*t^8.684)/g1^9 - (3*g3^2*t^8.691)/g1^2 - g3^8*t^8.724 + (g2^3*g3^6*t^8.743)/g1^2 + g1^2*g3^14*t^8.758 + 2*g2^3*g3^12*t^8.777 - t^8.806/(g1^4*g2^2*g3^12) + (g3^17*t^8.833)/g1^9 + (g2^3*g3^21*t^8.886)/g1^9 + (2*g2*t^8.892)/(g1^2*g3^2) - 9*g2*g3^4*t^8.926 + (g2^4*g3^2*t^8.945)/g1^2 + 2*g1^2*g2*g3^10*t^8.959 + (g3^9*t^8.982)/(g1^9*g2^2) - (g3*t^4.345)/(g1*y) - (g2*g3^9*t^6.653)/(g1^5*y) - (g3*t^6.801)/(g1^5*g2*y) - (g3^3*t^7.036)/(g1^3*y) - (g2*g3^5*t^7.271)/(g1*y) + t^7.42/(g1*g2*g3^3*y) + (g1*t^7.655)/(g3*y) + (g3^8*t^7.763)/(g1^8*y) + (g1^3*g2*g3*t^7.889)/y + (g2*g3^10*t^7.998)/(g1^6*y) + (g1^3*t^8.038)/(g2*g3^7*y) + (g3^2*t^8.147)/(g1^6*g2*y) + (2*g2^2*g3^12*t^8.233)/(g1^4*y) + (2*g3^4*t^8.382)/(g1^4*y) + (g2*t^8.583)/(g1^4*y) + (2*g2*g3^6*t^8.616)/(g1^2*y) + (g2*g3^12*t^8.65)/y + t^8.732/(g1^4*g2*g3^8*y) + (g3^4*t^8.799)/(g2*y) + (g2^2*g3^8*t^8.851)/y - (g2^2*g3^17*t^8.96)/(g1^9*y) + t^8.967/(g1^2*g3^6*y) - (g3*t^4.345*y)/g1 - (g2*g3^9*t^6.653*y)/g1^5 - (g3*t^6.801*y)/(g1^5*g2) - (g3^3*t^7.036*y)/g1^3 - (g2*g3^5*t^7.271*y)/g1 + (t^7.42*y)/(g1*g2*g3^3) + (g1*t^7.655*y)/g3 + (g3^8*t^7.763*y)/g1^8 + g1^3*g2*g3*t^7.889*y + (g2*g3^10*t^7.998*y)/g1^6 + (g1^3*t^8.038*y)/(g2*g3^7) + (g3^2*t^8.147*y)/(g1^6*g2) + (2*g2^2*g3^12*t^8.233*y)/g1^4 + (2*g3^4*t^8.382*y)/g1^4 + (g2*t^8.583*y)/g1^4 + (2*g2*g3^6*t^8.616*y)/g1^2 + g2*g3^12*t^8.65*y + (t^8.732*y)/(g1^4*g2*g3^8) + (g3^4*t^8.799*y)/g2 + g2^2*g3^8*t^8.851*y - (g2^2*g3^17*t^8.96*y)/g1^9 + (t^8.967*y)/(g1^2*g3^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46675 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{1}^{2}$ 0.7133 0.8853 0.8057 [M:[0.6716, 0.7152, 1.0218, 0.9782, 0.9782], q:[0.7883, 0.5401], qb:[0.4965, 0.4817], phi:[0.4234]] t^2.015 + t^2.146 + t^2.54 + 2*t^2.935 + t^3.11 + t^3.81 + t^4.03 + 2*t^4.16 + t^4.205 + t^4.249 + t^4.291 + t^4.335 + t^4.38 + t^4.51 + t^4.555 + t^4.686 + 2*t^4.95 + 3*t^5.08 + t^5.125 + t^5.255 + 2*t^5.475 + t^5.65 + 2*t^5.869 - 3*t^6. - t^4.27/y - t^4.27*y detail
46493 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ 0.5753 0.747 0.7701 [M:[0.6827, 0.76, 1.0387, 0.9613, 0.9613], q:[0.4938, 0.8235], qb:[0.7462, 0.2152], phi:[0.4303]] t^2.048 + t^2.127 + t^2.28 + 2*t^2.582 + 2*t^2.884 + t^3.418 + t^4.096 + t^4.175 + 2*t^4.254 + t^4.328 + t^4.407 + t^4.56 + 2*t^4.63 + 3*t^4.709 + 2*t^4.862 + 2*t^4.932 + 2*t^5.011 + 4*t^5.164 + 4*t^5.466 + t^5.545 + 3*t^5.768 - 2*t^6. - t^4.291/y - t^4.291*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46011 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ 0.7272 0.8931 0.8142 [M:[0.7935, 0.7935, 1.0, 1.0], q:[0.6608, 0.5457], qb:[0.5457, 0.4543], phi:[0.4484]] 2*t^2.381 + t^2.69 + 2*t^3. + t^3.274 + t^3.345 + t^4.071 + 2*t^4.345 + 3*t^4.619 + t^4.69 + 3*t^4.761 + 2*t^4.965 + 2*t^5.071 + t^5.31 + 4*t^5.381 + 2*t^5.69 + t^5.964 - 3*t^6. - t^4.345/y - t^4.345*y detail