Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2899 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ 0.655 0.8217 0.7971 [M:[0.8212, 1.231, 0.7168, 0.8466, 0.6914, 1.1534, 0.7944], q:[0.7429, 0.436], qb:[0.4106, 0.8726], phi:[0.3845]] [M:[[8, 0], [-2, 2], [-4, -4], [-3, 3], [7, -7], [3, -3], [-9, 1]], q:[[-1, -3], [-7, 3]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{6}M_{7}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$ ${}$ -2 t^2.074 + t^2.15 + t^2.383 + t^2.463 + t^2.54 + t^3.46 + 2*t^3.693 + t^3.769 + t^4.148 + t^4.224 + t^4.301 + t^4.457 + t^4.533 + t^4.538 + 2*t^4.614 + t^4.69 + t^4.766 + 2*t^4.847 + t^4.923 + t^4.927 + t^5.003 + t^5.079 + t^5.534 + t^5.611 + t^5.767 + 3*t^5.843 + t^5.92 - 2*t^6. + t^6.076 + t^6.152 + t^6.157 + t^6.222 + 2*t^6.233 + t^6.299 + t^6.309 + t^6.375 + t^6.451 + t^6.531 + t^6.608 + t^6.612 + t^6.684 + 2*t^6.688 + 2*t^6.764 + 2*t^6.84 + t^6.917 + 2*t^6.921 + 2*t^6.997 + t^7.001 + t^7.073 + t^7.077 + t^7.149 + t^7.153 + 2*t^7.23 + t^7.306 + t^7.386 + t^7.39 + 2*t^7.462 + t^7.467 + t^7.539 + t^7.609 + t^7.685 + t^7.761 + t^7.841 + 2*t^7.918 + 3*t^7.994 + t^8.07 - 2*t^8.074 - 2*t^8.15 + 2*t^8.227 + t^8.297 + t^8.303 + 2*t^8.307 + t^8.373 - t^8.383 + t^8.449 + 2*t^8.459 - 4*t^8.463 + t^8.525 + t^8.535 - 2*t^8.54 + t^8.601 + t^8.606 + t^8.616 + t^8.62 + t^8.682 + t^8.686 + t^8.692 + t^8.758 + 2*t^8.762 + t^8.772 + t^8.834 + 2*t^8.838 + t^8.849 + 3*t^8.914 + 2*t^8.991 + 2*t^8.995 - t^4.153/y - t^6.228/y - t^6.304/y - t^6.537/y - t^6.617/y + t^7.224/y + t^7.457/y + t^7.533/y + t^7.538/y + (2*t^7.614)/y + (2*t^7.69)/y + t^7.77/y + t^7.847/y + t^7.923/y + (2*t^8.003)/y + t^8.079/y - t^8.302/y - t^8.378/y - t^8.454/y + t^8.534/y - t^8.687/y - t^8.691/y + t^8.767/y + (4*t^8.843)/y + t^8.924/y - t^4.153*y - t^6.228*y - t^6.304*y - t^6.537*y - t^6.617*y + t^7.224*y + t^7.457*y + t^7.533*y + t^7.538*y + 2*t^7.614*y + 2*t^7.69*y + t^7.77*y + t^7.847*y + t^7.923*y + 2*t^8.003*y + t^8.079*y - t^8.302*y - t^8.378*y - t^8.454*y + t^8.534*y - t^8.687*y - t^8.691*y + t^8.767*y + 4*t^8.843*y + t^8.924*y (g1^7*t^2.074)/g2^7 + t^2.15/(g1^4*g2^4) + (g2*t^2.383)/g1^9 + g1^8*t^2.463 + (g2^3*t^2.54)/g1^3 + (g1^3*t^3.46)/g2^3 + (2*g2^2*t^3.693)/g1^2 + (g2^5*t^3.769)/g1^13 + (g1^14*t^4.148)/g2^14 + (g1^3*t^4.224)/g2^11 + t^4.301/(g1^8*g2^8) + t^4.457/(g1^2*g2^6) + t^4.533/(g1^13*g2^3) + (g1^15*t^4.538)/g2^7 + (2*g1^4*t^4.614)/g2^4 + t^4.69/(g1^7*g2) + (g2^2*t^4.766)/g1^18 + (2*g2*t^4.847)/g1 + (g2^4*t^4.923)/g1^12 + g1^16*t^4.927 + g1^5*g2^3*t^5.003 + (g2^6*t^5.079)/g1^6 + (g1^10*t^5.534)/g2^10 + t^5.611/(g1*g2^7) + (g1^5*t^5.767)/g2^5 + (3*t^5.843)/(g1^6*g2^2) + (g2*t^5.92)/g1^17 - 2*t^6. + (g2^3*t^6.076)/g1^11 + (g2^6*t^6.152)/g1^22 + g1^6*g2^2*t^6.157 + (g1^21*t^6.222)/g2^21 + (2*g2^5*t^6.233)/g1^5 + (g1^10*t^6.299)/g2^18 + (g2^8*t^6.309)/g1^16 + t^6.375/(g1*g2^15) + t^6.451/(g1^12*g2^12) + (g1^5*t^6.531)/g2^13 + t^6.608/(g1^6*g2^10) + (g1^22*t^6.612)/g2^14 + t^6.684/(g1^17*g2^7) + (2*g1^11*t^6.688)/g2^11 + (2*t^6.764)/g2^8 + (2*t^6.84)/(g1^11*g2^5) + t^6.917/(g1^22*g2^2) + (2*g1^6*t^6.921)/g2^6 + (2*t^6.997)/(g1^5*g2^3) + (g1^23*t^7.001)/g2^7 + t^7.073/g1^16 + (g1^12*t^7.077)/g2^4 + (g2^3*t^7.149)/g1^27 + (g1*t^7.153)/g2 + (2*g2^2*t^7.23)/g1^10 + (g2^5*t^7.306)/g1^21 + (g2^4*t^7.386)/g1^4 + g1^24*t^7.39 + (2*g2^7*t^7.462)/g1^15 + g1^13*g2^3*t^7.467 + (g2^10*t^7.539)/g1^26 + (g1^17*t^7.609)/g2^17 + (g1^6*t^7.685)/g2^14 + t^7.761/(g1^5*g2^11) + (g1^12*t^7.841)/g2^12 + (2*g1*t^7.918)/g2^9 + (3*t^7.994)/(g1^10*g2^6) + t^8.07/(g1^21*g2^3) - (2*g1^7*t^8.074)/g2^7 - (2*t^8.15)/(g1^4*g2^4) + (2*t^8.227)/(g1^15*g2) + (g1^28*t^8.297)/g2^28 + (g2^2*t^8.303)/g1^26 + (2*g1^2*t^8.307)/g2^2 + (g1^17*t^8.373)/g2^25 - (g2*t^8.383)/g1^9 + (g1^6*t^8.449)/g2^22 + (2*g2^4*t^8.459)/g1^20 - 4*g1^8*t^8.463 + t^8.525/(g1^5*g2^19) + (g2^7*t^8.535)/g1^31 - (2*g2^3*t^8.54)/g1^3 + t^8.601/(g1^16*g2^16) + (g1^12*t^8.606)/g2^20 + (g2^6*t^8.616)/g1^14 + g1^14*g2^2*t^8.62 + (g1*t^8.682)/g2^17 + (g1^29*t^8.686)/g2^21 + (g2^9*t^8.692)/g1^25 + t^8.758/(g1^10*g2^14) + (2*g1^18*t^8.762)/g2^18 + (g2^8*t^8.772)/g1^8 + t^8.834/(g1^21*g2^11) + (2*g1^7*t^8.838)/g2^15 + (g2^11*t^8.849)/g1^19 + (3*t^8.914)/(g1^4*g2^12) + (2*t^8.991)/(g1^15*g2^9) + (2*g1^13*t^8.995)/g2^13 - (g1*t^4.153)/(g2*y) - (g1^8*t^6.228)/(g2^8*y) - t^6.304/(g1^3*g2^5*y) - t^6.537/(g1^8*y) - (g1^9*t^6.617)/(g2*y) + (g1^3*t^7.224)/(g2^11*y) + t^7.457/(g1^2*g2^6*y) + t^7.533/(g1^13*g2^3*y) + (g1^15*t^7.538)/(g2^7*y) + (2*g1^4*t^7.614)/(g2^4*y) + (2*t^7.69)/(g1^7*g2*y) + (g1^10*t^7.77)/(g2^2*y) + (g2*t^7.847)/(g1*y) + (g2^4*t^7.923)/(g1^12*y) + (2*g1^5*g2^3*t^8.003)/y + (g2^6*t^8.079)/(g1^6*y) - (g1^15*t^8.302)/(g2^15*y) - (g1^4*t^8.378)/(g2^12*y) - t^8.454/(g1^7*g2^9*y) + (g1^10*t^8.534)/(g2^10*y) - t^8.687/(g1^12*g2^4*y) - (g1^16*t^8.691)/(g2^8*y) + (g1^5*t^8.767)/(g2^5*y) + (4*t^8.843)/(g1^6*g2^2*y) + (g1^11*t^8.924)/(g2^3*y) - (g1*t^4.153*y)/g2 - (g1^8*t^6.228*y)/g2^8 - (t^6.304*y)/(g1^3*g2^5) - (t^6.537*y)/g1^8 - (g1^9*t^6.617*y)/g2 + (g1^3*t^7.224*y)/g2^11 + (t^7.457*y)/(g1^2*g2^6) + (t^7.533*y)/(g1^13*g2^3) + (g1^15*t^7.538*y)/g2^7 + (2*g1^4*t^7.614*y)/g2^4 + (2*t^7.69*y)/(g1^7*g2) + (g1^10*t^7.77*y)/g2^2 + (g2*t^7.847*y)/g1 + (g2^4*t^7.923*y)/g1^12 + 2*g1^5*g2^3*t^8.003*y + (g2^6*t^8.079*y)/g1^6 - (g1^15*t^8.302*y)/g2^15 - (g1^4*t^8.378*y)/g2^12 - (t^8.454*y)/(g1^7*g2^9) + (g1^10*t^8.534*y)/g2^10 - (t^8.687*y)/(g1^12*g2^4) - (g1^16*t^8.691*y)/g2^8 + (g1^5*t^8.767*y)/g2^5 + (4*t^8.843*y)/(g1^6*g2^2) + (g1^11*t^8.924*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3477 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{7}$ + ${ }M_{1}X_{1}$ 0.571 0.696 0.8204 [X:[1.4089], M:[0.5911, 1.2119, 0.9851, 0.8179, 0.7583, 1.1821, 1.0149], q:[0.8866, 0.5223], qb:[0.2955, 0.7194], phi:[0.394]] t^2.275 + t^2.454 + t^2.955 + t^3.045 + t^3.546 + 2*t^3.636 + t^4.227 + t^4.316 + t^4.55 + t^4.728 + t^4.818 + t^4.907 + t^5.23 + t^5.498 + t^5.821 + 2*t^5.911 - t^6. - t^4.182/y - t^4.182*y detail
3479 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.6748 0.8586 0.7859 [M:[0.8089, 1.2355, 0.7202, 0.8532, 0.6758, 1.1468, 0.8089, 0.7202], q:[0.7423, 0.4488], qb:[0.4044, 0.8754], phi:[0.3823]] t^2.027 + 2*t^2.161 + 2*t^2.427 + t^2.56 + t^3.44 + 2*t^3.706 + t^4.055 + 2*t^4.188 + 3*t^4.321 + 2*t^4.454 + 5*t^4.587 + 2*t^4.72 + 4*t^4.853 + 2*t^4.986 + t^5.119 + t^5.468 + 2*t^5.601 + t^5.734 + 4*t^5.867 - 2*t^6. - t^4.147/y - t^4.147*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1883 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ 0.639 0.7933 0.8056 [M:[0.7924, 1.2338, 0.7399, 0.8507, 0.6817, 1.1493], q:[0.7531, 0.4545], qb:[0.3962, 0.8638], phi:[0.3831]] t^2.045 + t^2.22 + t^2.377 + t^2.552 + t^3.448 + t^3.527 + 2*t^3.701 + t^3.876 + t^4.09 + t^4.265 + t^4.422 + t^4.44 + 2*t^4.597 + t^4.755 + t^4.772 + t^4.851 + t^4.929 + t^5.104 + t^5.493 + t^5.572 + t^5.668 + 2*t^5.746 + t^5.904 + 2*t^5.921 - 2*t^6. - t^4.149/y - t^4.149*y detail