Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
344 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ 0.6064 0.7787 0.7788 [X:[], M:[0.9857, 1.043, 1.0143, 0.7364], q:[0.7464, 0.2679], qb:[0.4885, 0.4685], phi:[0.5072]] [X:[], M:[[4, 4], [-12, -12], [-4, -4], [-5, 7]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_3$, $ \phi_1^2$, $ M_2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2M_4$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_4q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_1^2$ . -3 2*t^2.21 + t^2.27 + 2*t^3.04 + 2*t^3.13 + t^3.64 + t^3.7 + t^3.73 + t^4.33 + t^4.39 + 3*t^4.42 + t^4.45 + 2*t^4.48 + t^4.54 + 4*t^5.25 + 2*t^5.31 + 3*t^5.34 + t^5.4 + 2*t^5.85 + 2*t^5.91 + t^5.94 + t^5.97 - 3*t^6. - t^6.06 + t^6.09 + 4*t^6.17 + 3*t^6.26 + 2*t^6.54 + t^6.6 + 4*t^6.63 + t^6.66 + 3*t^6.69 + t^6.72 + 2*t^6.75 + 2*t^6.77 + t^6.81 + t^6.86 - t^6.92 + 2*t^7.38 + 7*t^7.46 + t^7.5 + 2*t^7.52 + 4*t^7.55 + 2*t^7.58 + t^7.61 + t^7.67 + t^7.98 + t^8.04 + 4*t^8.06 + t^8.1 + t^8.12 + t^8.15 + t^8.16 - 7*t^8.21 + t^8.24 - 5*t^8.27 + 2*t^8.3 - t^8.33 + t^8.36 + 6*t^8.38 + 2*t^8.44 + 4*t^8.47 + t^8.53 + t^8.67 + t^8.73 + 3*t^8.75 + t^8.78 + t^8.81 + 6*t^8.84 + 5*t^8.9 + t^8.93 + 2*t^8.96 + 2*t^8.98 + t^8.99 - t^4.52/y - t^6.73/y + t^7.39/y + t^7.42/y + (3*t^7.48)/y - t^7.56/y - t^7.65/y + (4*t^8.25)/y + (3*t^8.31)/y + (4*t^8.34)/y + (2*t^8.4)/y + (2*t^8.85)/y + (3*t^8.91)/y + t^8.94/y + t^8.97/y - t^4.52*y - t^6.73*y + t^7.39*y + t^7.42*y + 3*t^7.48*y - t^7.56*y - t^7.65*y + 4*t^8.25*y + 3*t^8.31*y + 4*t^8.34*y + 2*t^8.4*y + 2*t^8.85*y + 3*t^8.91*y + t^8.94*y + t^8.97*y (2*g2^7*t^2.21)/g1^5 + (g1^7*t^2.27)/g2^5 + (2*t^3.04)/(g1^4*g2^4) + (2*t^3.13)/(g1^12*g2^12) + g1*g2^13*t^3.64 + g1^13*g2*t^3.7 + (g2^5*t^3.73)/g1^7 + (g2^22*t^4.33)/g1^2 + g1^10*g2^10*t^4.39 + (3*g2^14*t^4.42)/g1^10 + (g1^22*t^4.45)/g2^2 + 2*g1^2*g2^2*t^4.48 + (g1^14*t^4.54)/g2^10 + (4*g2^3*t^5.25)/g1^9 + (2*g1^3*t^5.31)/g2^9 + (3*t^5.34)/(g1^17*g2^5) + t^5.4/(g1^5*g2^17) + (2*g2^20*t^5.85)/g1^4 + 2*g1^8*g2^8*t^5.91 + (g2^12*t^5.94)/g1^12 + (g1^20*t^5.97)/g2^4 - 3*t^6. - (g1^12*t^6.06)/g2^12 + t^6.09/(g1^8*g2^8) + (4*t^6.17)/(g1^16*g2^16) + (3*t^6.26)/(g1^24*g2^24) + (2*g2^29*t^6.54)/g1^7 + g1^5*g2^17*t^6.6 + (4*g2^21*t^6.63)/g1^15 + g1^17*g2^5*t^6.66 + (3*g2^9*t^6.69)/g1^3 + (g1^29*t^6.72)/g2^7 + (2*g1^9*t^6.75)/g2^3 + (2*g2*t^6.77)/g1^11 + (g1^21*t^6.81)/g2^15 + t^6.86/(g1^19*g2^7) - t^6.92/(g1^7*g2^19) + (2*g2^18*t^7.38)/g1^6 + (7*g2^10*t^7.46)/g1^14 + (g1^18*t^7.5)/g2^6 + (2*t^7.52)/(g1^2*g2^2) + (4*g2^2*t^7.55)/g1^22 + (2*g1^10*t^7.58)/g2^14 + t^7.61/(g1^10*g2^10) + (g1^2*t^7.67)/g2^22 + (g2^35*t^7.98)/g1 + g1^11*g2^23*t^8.04 + (4*g2^27*t^8.06)/g1^9 + g1^23*g2^11*t^8.1 + g1^3*g2^15*t^8.12 + (g2^19*t^8.15)/g1^17 + (g1^35*t^8.16)/g2 - (7*g2^7*t^8.21)/g1^5 + (g1^27*t^8.24)/g2^9 - (5*g1^7*t^8.27)/g2^5 + (2*t^8.3)/(g1^13*g2) - (g1^19*t^8.33)/g2^17 + t^8.36/(g1*g2^13) + (6*t^8.38)/(g1^21*g2^9) + (2*t^8.44)/(g1^9*g2^21) + (4*t^8.47)/(g1^29*g2^17) + t^8.53/(g1^17*g2^29) + (g2^44*t^8.67)/g1^4 + g1^8*g2^32*t^8.73 + (3*g2^36*t^8.75)/g1^12 + g1^20*g2^20*t^8.78 + g2^24*t^8.81 + g1^32*g2^8*t^8.84 + (5*g2^28*t^8.84)/g1^20 + (g1^44*t^8.9)/g2^4 + (4*g2^16*t^8.9)/g1^8 + g1^24*t^8.93 + 2*g1^4*g2^4*t^8.96 + (2*g2^8*t^8.98)/g1^16 + (g1^36*t^8.99)/g2^12 - t^4.52/(g1^2*g2^2*y) - (g2^5*t^6.73)/(g1^7*y) + (g1^10*g2^10*t^7.39)/y + (g2^14*t^7.42)/(g1^10*y) + (3*g1^2*g2^2*t^7.48)/y - t^7.56/(g1^6*g2^6*y) - t^7.65/(g1^14*g2^14*y) + (4*g2^3*t^8.25)/(g1^9*y) + (3*g1^3*t^8.31)/(g2^9*y) + (4*t^8.34)/(g1^17*g2^5*y) + (2*t^8.4)/(g1^5*g2^17*y) + (2*g2^20*t^8.85)/(g1^4*y) + (3*g1^8*g2^8*t^8.91)/y + (g2^12*t^8.94)/(g1^12*y) + (g1^20*t^8.97)/(g2^4*y) - (t^4.52*y)/(g1^2*g2^2) - (g2^5*t^6.73*y)/g1^7 + g1^10*g2^10*t^7.39*y + (g2^14*t^7.42*y)/g1^10 + 3*g1^2*g2^2*t^7.48*y - (t^7.56*y)/(g1^6*g2^6) - (t^7.65*y)/(g1^14*g2^14) + (4*g2^3*t^8.25*y)/g1^9 + (3*g1^3*t^8.31*y)/g2^9 + (4*t^8.34*y)/(g1^17*g2^5) + (2*t^8.4*y)/(g1^5*g2^17) + (2*g2^20*t^8.85*y)/g1^4 + 3*g1^8*g2^8*t^8.91*y + (g2^12*t^8.94*y)/g1^12 + (g1^20*t^8.97*y)/g2^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
543 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_2M_4$ 0.5799 0.7477 0.7755 [X:[], M:[0.9257, 1.223, 1.0743, 0.777], q:[0.7314, 0.3429], qb:[0.3429, 0.4341], phi:[0.5372]] t^2.06 + 2*t^2.33 + 3*t^3.22 + t^3.5 + 3*t^3.67 + 2*t^3.94 + t^4.11 + t^4.22 + 2*t^4.39 + 3*t^4.66 + 3*t^5.28 + 6*t^5.55 + t^5.73 + 2*t^5.83 + t^6. - t^4.61/y - t^4.61*y detail
542 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.6062 0.7779 0.7793 [X:[], M:[0.9855, 1.0434, 1.0145, 0.7464], q:[0.7464, 0.2681], qb:[0.4783, 0.4783], phi:[0.5072]] 3*t^2.24 + 2*t^3.04 + 2*t^3.13 + 2*t^3.67 + t^3.76 + 3*t^4.39 + 6*t^4.48 + 6*t^5.28 + 4*t^5.37 + 5*t^5.91 - 3*t^6. - t^4.52/y - t^4.52*y detail
1822 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ 0.6055 0.7768 0.7796 [X:[], M:[0.9916, 1.0252, 1.0084, 0.7563], q:[0.7479, 0.2605], qb:[0.479, 0.4958], phi:[0.5042]] t^2.22 + 2*t^2.27 + 2*t^3.03 + 2*t^3.08 + t^3.68 + t^3.73 + t^3.78 + t^4.39 + 2*t^4.44 + 3*t^4.49 + 3*t^4.54 + 2*t^5.24 + 5*t^5.29 + 3*t^5.34 + t^5.9 + t^5.95 - t^6. - t^4.51/y - t^4.51*y detail
544 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ 0.6254 0.8129 0.7694 [X:[], M:[0.9847, 1.0459, 1.0153, 0.7462, 0.7462], q:[0.7462, 0.2691], qb:[0.477, 0.477], phi:[0.5077]] 4*t^2.24 + 2*t^3.05 + 2*t^3.14 + 2*t^3.67 + 3*t^4.39 + 10*t^4.48 + 8*t^5.28 + 6*t^5.38 + 7*t^5.91 - 6*t^6. - t^4.52/y - t^4.52*y detail
1821 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ 0.6253 0.8143 0.7679 [X:[], M:[0.9916, 1.0253, 1.0084, 0.7277, 0.7446], q:[0.7479, 0.2605], qb:[0.5075, 0.4672], phi:[0.5042]] 2*t^2.18 + t^2.23 + t^2.3 + 2*t^3.03 + 2*t^3.08 + t^3.65 + t^3.7 + t^4.32 + 3*t^4.37 + 2*t^4.42 + t^4.44 + t^4.47 + 2*t^4.49 + t^4.54 + t^4.56 + t^4.61 + 4*t^5.21 + 5*t^5.26 + 2*t^5.31 + 2*t^5.33 + t^5.38 + 2*t^5.83 + 2*t^5.88 + t^5.93 - 3*t^6. - t^4.51/y - t^4.51*y detail
1820 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ 0.6244 0.811 0.77 [X:[], M:[0.9923, 1.0232, 1.0077, 0.7496, 0.7621], q:[0.7481, 0.2597], qb:[0.4869, 0.4899], phi:[0.5039]] t^2.24 + 2*t^2.25 + t^2.29 + 2*t^3.02 + 2*t^3.07 + t^3.7 + t^3.76 + t^4.43 + t^4.44 + t^4.45 + t^4.48 + 2*t^4.49 + 3*t^4.5 + 3*t^4.53 + t^4.57 + 2*t^5.26 + 4*t^5.27 + 3*t^5.31 + 3*t^5.32 + 2*t^5.36 + t^5.94 + t^5.95 - 3*t^6. - t^4.51/y - t^4.51*y detail
1818 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ 0.6064 0.7789 0.7785 [X:[], M:[0.9868, 1.0396, 1.0132, 0.7335], q:[0.7467, 0.2665], qb:[0.4934, 0.467], phi:[0.5066]] 2*t^2.2 + t^2.28 + 2*t^3.04 + 2*t^3.12 + t^3.64 + 2*t^3.72 + t^4.32 + 4*t^4.4 + 3*t^4.48 + t^4.56 + 4*t^5.24 + 5*t^5.32 + t^5.4 + 2*t^5.84 + 3*t^5.92 - 2*t^6. - t^4.52/y - t^4.52*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
215 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ 0.587 0.7429 0.7902 [X:[], M:[0.9864, 1.0409, 1.0136], q:[0.7466, 0.267], qb:[0.4795, 0.4795], phi:[0.5068]] 2*t^2.24 + 2*t^3.04 + 2*t^3.12 + 2*t^3.68 + 2*t^3.76 + 3*t^4.4 + 3*t^4.48 + 4*t^5.28 + 2*t^5.36 + 3*t^5.92 - 2*t^6. - t^4.52/y - t^4.52*y detail