Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1822 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 0.6055 0.7768 0.7796 [M:[0.9916, 1.0252, 1.0084, 0.7563], q:[0.7479, 0.2605], qb:[0.479, 0.4958], phi:[0.5042]] [M:[[4], [-12], [-4], [-3]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}q_{1}q_{2}\tilde{q}_{2}^{2}$ -1 t^2.218 + 2*t^2.269 + 2*t^3.025 + 2*t^3.076 + t^3.681 + t^3.731 + t^3.782 + t^4.386 + 2*t^4.437 + 3*t^4.487 + 3*t^4.538 + 2*t^5.244 + 5*t^5.294 + 3*t^5.345 + t^5.899 + t^5.95 - t^6. + 2*t^6.05 + 4*t^6.101 + 3*t^6.151 + t^6.605 + 2*t^6.655 + 3*t^6.706 + 5*t^6.756 + 5*t^6.807 + t^6.857 + t^7.412 + 2*t^7.462 + 5*t^7.513 + 8*t^7.563 + 4*t^7.614 + t^8.067 + 2*t^8.118 - 3*t^8.218 - 2*t^8.269 + 5*t^8.319 + 7*t^8.37 + 4*t^8.42 + t^8.773 + 2*t^8.823 + 3*t^8.874 + 3*t^8.924 + 2*t^8.975 - t^4.513/y - t^6.782/y + t^7.437/y + (3*t^7.487)/y - t^7.588/y + (3*t^8.244)/y + (6*t^8.294)/y + (4*t^8.345)/y + t^8.899/y + (3*t^8.95)/y - t^4.513*y - t^6.782*y + t^7.437*y + 3*t^7.487*y - t^7.588*y + 3*t^8.244*y + 6*t^8.294*y + 4*t^8.345*y + t^8.899*y + 3*t^8.95*y g1^5*t^2.218 + (2*t^2.269)/g1^3 + (2*t^3.025)/g1^4 + (2*t^3.076)/g1^12 + g1^11*t^3.681 + g1^3*t^3.731 + t^3.782/g1^5 + g1^18*t^4.386 + 2*g1^10*t^4.437 + 3*g1^2*t^4.487 + (3*t^4.538)/g1^6 + 2*g1*t^5.244 + (5*t^5.294)/g1^7 + (3*t^5.345)/g1^15 + g1^16*t^5.899 + g1^8*t^5.95 - t^6. + (2*t^6.05)/g1^8 + (4*t^6.101)/g1^16 + (3*t^6.151)/g1^24 + g1^23*t^6.605 + 2*g1^15*t^6.655 + 3*g1^7*t^6.706 + (5*t^6.756)/g1 + (5*t^6.807)/g1^9 + t^6.857/g1^17 + g1^14*t^7.412 + 2*g1^6*t^7.462 + (5*t^7.513)/g1^2 + (8*t^7.563)/g1^10 + (4*t^7.614)/g1^18 + g1^29*t^8.067 + 2*g1^21*t^8.118 - 3*g1^5*t^8.218 - (2*t^8.269)/g1^3 + (5*t^8.319)/g1^11 + (7*t^8.37)/g1^19 + (4*t^8.42)/g1^27 + g1^36*t^8.773 + 2*g1^28*t^8.823 + 3*g1^20*t^8.874 + 3*g1^12*t^8.924 + 2*g1^4*t^8.975 - t^4.513/(g1^2*y) - t^6.782/(g1^5*y) + (g1^10*t^7.437)/y + (3*g1^2*t^7.487)/y - t^7.588/(g1^14*y) + (3*g1*t^8.244)/y + (6*t^8.294)/(g1^7*y) + (4*t^8.345)/(g1^15*y) + (g1^16*t^8.899)/y + (3*g1^8*t^8.95)/y - (t^4.513*y)/g1^2 - (t^6.782*y)/g1^5 + g1^10*t^7.437*y + 3*g1^2*t^7.487*y - (t^7.588*y)/g1^14 + 3*g1*t^8.244*y + (6*t^8.294*y)/g1^7 + (4*t^8.345*y)/g1^15 + g1^16*t^8.899*y + 3*g1^8*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2839 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.6244 0.8111 0.7698 [M:[0.9936, 1.0191, 1.0064, 0.7548, 0.7548], q:[0.7484, 0.258], qb:[0.4841, 0.4968], phi:[0.5032]] t^2.226 + 3*t^2.264 + 2*t^3.019 + 2*t^3.057 + t^3.697 + t^3.774 + t^4.414 + 2*t^4.452 + 4*t^4.49 + 6*t^4.529 + 2*t^5.245 + 7*t^5.283 + 5*t^5.322 + t^5.923 + t^5.962 - 3*t^6. - t^4.51/y - t^4.51*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
344 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6064 0.7787 0.7788 [M:[0.9857, 1.043, 1.0143, 0.7364], q:[0.7464, 0.2679], qb:[0.4885, 0.4685], phi:[0.5072]] 2*t^2.209 + t^2.269 + 2*t^3.043 + 2*t^3.129 + t^3.645 + t^3.705 + t^3.731 + t^4.333 + t^4.392 + 3*t^4.419 + t^4.452 + 2*t^4.478 + t^4.538 + 4*t^5.252 + 2*t^5.312 + 3*t^5.338 + t^5.398 + 2*t^5.854 + 2*t^5.914 + t^5.94 + t^5.974 - 3*t^6. - t^4.522/y - t^4.522*y detail