Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1821 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.6253 0.8143 0.7679 [M:[0.9916, 1.0253, 1.0084, 0.7277, 0.7446], q:[0.7479, 0.2605], qb:[0.5075, 0.4672], phi:[0.5042]] [M:[[4, 4], [-12, -12], [-4, -4], [-5, 7], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ ${}$ -3 2*t^2.183 + t^2.234 + t^2.304 + 2*t^3.025 + 2*t^3.076 + t^3.645 + t^3.696 + t^4.316 + 3*t^4.366 + 2*t^4.417 + t^4.437 + t^4.467 + 2*t^4.487 + t^4.538 + t^4.558 + t^4.609 + 4*t^5.208 + 5*t^5.259 + 2*t^5.31 + 2*t^5.33 + t^5.38 + 2*t^5.828 + 2*t^5.879 + t^5.929 - 3*t^6. + t^6.051 + 4*t^6.101 - t^6.121 + 3*t^6.152 + 2*t^6.499 + 5*t^6.549 + 3*t^6.6 + t^6.62 + 2*t^6.65 + 4*t^6.67 + t^6.701 + 4*t^6.721 + t^6.741 + 2*t^6.772 + t^6.792 - t^6.842 + t^6.862 - t^6.893 + t^6.913 + 2*t^7.341 + 7*t^7.391 - t^7.411 + 8*t^7.442 - t^7.462 + 5*t^7.493 + 2*t^7.513 - t^7.533 + 2*t^7.543 + 3*t^7.563 + t^7.583 + t^7.614 + 2*t^7.634 + t^7.684 + t^7.961 + 4*t^8.011 + 3*t^8.062 + 2*t^8.113 - 2*t^8.133 + t^8.163 - 7*t^8.183 - t^8.234 - 2*t^8.254 + 7*t^8.284 - 5*t^8.304 + 8*t^8.335 + 3*t^8.385 + 2*t^8.405 - t^8.425 + t^8.456 + t^8.631 + 3*t^8.682 + 7*t^8.732 + t^8.752 + 5*t^8.783 + t^8.803 + 3*t^8.834 + 5*t^8.854 + t^8.874 + 2*t^8.884 + 6*t^8.904 + t^8.935 + 5*t^8.955 - t^8.975 + t^8.995 - t^4.513/y - t^6.696/y - t^6.746/y + t^7.366/y + (2*t^7.417)/y + t^7.437/y + (3*t^7.487)/y - t^7.589/y + (4*t^8.208)/y + (6*t^8.259)/y + t^8.279/y + (2*t^8.31)/y + (3*t^8.33)/y + (2*t^8.38)/y + (2*t^8.828)/y + (2*t^8.879)/y + t^8.949/y - t^8.98/y - t^4.513*y - t^6.696*y - t^6.746*y + t^7.366*y + 2*t^7.417*y + t^7.437*y + 3*t^7.487*y - t^7.589*y + 4*t^8.208*y + 6*t^8.259*y + t^8.279*y + 2*t^8.31*y + 3*t^8.33*y + 2*t^8.38*y + 2*t^8.828*y + 2*t^8.879*y + t^8.949*y - t^8.98*y (2*g2^7*t^2.183)/g1^5 + t^2.234/(g1^13*g2) + (g1^7*t^2.304)/g2^5 + (2*t^3.025)/(g1^4*g2^4) + (2*t^3.076)/(g1^12*g2^12) + g1*g2^13*t^3.645 + (g2^5*t^3.696)/g1^7 + (g2^22*t^4.316)/g1^2 + (3*g2^14*t^4.366)/g1^10 + (2*g2^6*t^4.417)/g1^18 + g1^10*g2^10*t^4.437 + t^4.467/(g1^26*g2^2) + 2*g1^2*g2^2*t^4.487 + t^4.538/(g1^6*g2^6) + (g1^22*t^4.558)/g2^2 + (g1^14*t^4.609)/g2^10 + (4*g2^3*t^5.208)/g1^9 + (5*t^5.259)/(g1^17*g2^5) + (2*t^5.31)/(g1^25*g2^13) + (2*g1^3*t^5.33)/g2^9 + t^5.38/(g1^5*g2^17) + (2*g2^20*t^5.828)/g1^4 + (2*g2^12*t^5.879)/g1^12 + (g2^4*t^5.929)/g1^20 - 3*t^6. + t^6.051/(g1^8*g2^8) + (4*t^6.101)/(g1^16*g2^16) - (g1^12*t^6.121)/g2^12 + (3*t^6.152)/(g1^24*g2^24) + (2*g2^29*t^6.499)/g1^7 + (5*g2^21*t^6.549)/g1^15 + (3*g2^13*t^6.6)/g1^23 + g1^5*g2^17*t^6.62 + (2*g2^5*t^6.65)/g1^31 + (4*g2^9*t^6.67)/g1^3 + t^6.701/(g1^39*g2^3) + (4*g2*t^6.721)/g1^11 + g1^17*g2^5*t^6.741 + (2*t^6.772)/(g1^19*g2^7) + (g1^9*t^6.792)/g2^3 - (g1*t^6.842)/g2^11 + (g1^29*t^6.862)/g2^7 - t^6.893/(g1^7*g2^19) + (g1^21*t^6.913)/g2^15 + (2*g2^18*t^7.341)/g1^6 + (7*g2^10*t^7.391)/g1^14 - g1^14*g2^14*t^7.411 + (8*g2^2*t^7.442)/g1^22 - g1^6*g2^6*t^7.462 + (5*t^7.493)/(g1^30*g2^6) + (2*t^7.513)/(g1^2*g2^2) - g1^26*g2^2*t^7.533 + (2*t^7.543)/(g1^38*g2^14) + (3*t^7.563)/(g1^10*g2^10) + (g1^18*t^7.583)/g2^6 + t^7.614/(g1^18*g2^18) + (2*g1^10*t^7.634)/g2^14 + (g1^2*t^7.684)/g2^22 + (g2^35*t^7.961)/g1 + (4*g2^27*t^8.011)/g1^9 + (3*g2^19*t^8.062)/g1^17 + (2*g2^11*t^8.113)/g1^25 - 2*g1^3*g2^15*t^8.133 + (g2^3*t^8.163)/g1^33 - (7*g2^7*t^8.183)/g1^5 - t^8.234/(g1^13*g2) - 2*g1^15*g2^3*t^8.254 + (7*t^8.284)/(g1^21*g2^9) - (5*g1^7*t^8.304)/g2^5 + (8*t^8.335)/(g1^29*g2^17) + (3*t^8.385)/(g1^37*g2^25) + (2*t^8.405)/(g1^9*g2^21) - (g1^19*t^8.425)/g2^17 + t^8.456/(g1^17*g2^29) + (g2^44*t^8.631)/g1^4 + (3*g2^36*t^8.682)/g1^12 + (7*g2^28*t^8.732)/g1^20 + g1^8*g2^32*t^8.752 + (5*g2^20*t^8.783)/g1^28 + g2^24*t^8.803 + (3*g2^12*t^8.834)/g1^36 + (5*g2^16*t^8.854)/g1^8 + g1^20*g2^20*t^8.874 + (2*g2^4*t^8.884)/g1^44 + (6*g2^8*t^8.904)/g1^16 + t^8.935/(g1^52*g2^4) + (5*t^8.955)/g1^24 - g1^4*g2^4*t^8.975 + g1^32*g2^8*t^8.995 - t^4.513/(g1^2*g2^2*y) - (g2^5*t^6.696)/(g1^7*y) - t^6.746/(g1^15*g2^3*y) + (g2^14*t^7.366)/(g1^10*y) + (2*g2^6*t^7.417)/(g1^18*y) + (g1^10*g2^10*t^7.437)/y + (3*g1^2*g2^2*t^7.487)/y - t^7.589/(g1^14*g2^14*y) + (4*g2^3*t^8.208)/(g1^9*y) + (6*t^8.259)/(g1^17*g2^5*y) + (g1^11*t^8.279)/(g2*y) + (2*t^8.31)/(g1^25*g2^13*y) + (3*g1^3*t^8.33)/(g2^9*y) + (2*t^8.38)/(g1^5*g2^17*y) + (2*g2^20*t^8.828)/(g1^4*y) + (2*g2^12*t^8.879)/(g1^12*y) + (g1^8*g2^8*t^8.949)/y - t^8.98/(g1^28*g2^4*y) - (t^4.513*y)/(g1^2*g2^2) - (g2^5*t^6.696*y)/g1^7 - (t^6.746*y)/(g1^15*g2^3) + (g2^14*t^7.366*y)/g1^10 + (2*g2^6*t^7.417*y)/g1^18 + g1^10*g2^10*t^7.437*y + 3*g1^2*g2^2*t^7.487*y - (t^7.589*y)/(g1^14*g2^14) + (4*g2^3*t^8.208*y)/g1^9 + (6*t^8.259*y)/(g1^17*g2^5) + (g1^11*t^8.279*y)/g2 + (2*t^8.31*y)/(g1^25*g2^13) + (3*g1^3*t^8.33*y)/g2^9 + (2*t^8.38*y)/(g1^5*g2^17) + (2*g2^20*t^8.828*y)/g1^4 + (2*g2^12*t^8.879*y)/g1^12 + g1^8*g2^8*t^8.949*y - (t^8.98*y)/(g1^28*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
344 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6064 0.7787 0.7788 [M:[0.9857, 1.043, 1.0143, 0.7364], q:[0.7464, 0.2679], qb:[0.4885, 0.4685], phi:[0.5072]] 2*t^2.209 + t^2.269 + 2*t^3.043 + 2*t^3.129 + t^3.645 + t^3.705 + t^3.731 + t^4.333 + t^4.392 + 3*t^4.419 + t^4.452 + 2*t^4.478 + t^4.538 + 4*t^5.252 + 2*t^5.312 + 3*t^5.338 + t^5.398 + 2*t^5.854 + 2*t^5.914 + t^5.94 + t^5.974 - 3*t^6. - t^4.522/y - t^4.522*y detail