Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1821 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ 0.6253 0.8143 0.7679 [X:[], M:[0.9916, 1.0253, 1.0084, 0.7277, 0.7446], q:[0.7479, 0.2605], qb:[0.5075, 0.4672], phi:[0.5042]] [X:[], M:[[4, 4], [-12, -12], [-4, -4], [-5, 7], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ q_2\tilde{q}_2$, $ M_5$, $ q_2\tilde{q}_1$, $ M_3$, $ \phi_1^2$, $ M_2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_5$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_4$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_5$, $ M_5\phi_1q_2^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_5q_1\tilde{q}_2$, $ M_4\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$, $ M_5\phi_1q_2\tilde{q}_2$ . -3 2*t^2.18 + t^2.23 + t^2.3 + 2*t^3.03 + 2*t^3.08 + t^3.65 + t^3.7 + t^4.32 + 3*t^4.37 + 2*t^4.42 + t^4.44 + t^4.47 + 2*t^4.49 + t^4.54 + t^4.56 + t^4.61 + 4*t^5.21 + 5*t^5.26 + 2*t^5.31 + 2*t^5.33 + t^5.38 + 2*t^5.83 + 2*t^5.88 + t^5.93 - 3*t^6. + t^6.05 + 4*t^6.1 - t^6.12 + 3*t^6.15 + 2*t^6.5 + 5*t^6.55 + 3*t^6.6 + t^6.62 + 2*t^6.65 + 4*t^6.67 + t^6.7 + 4*t^6.72 + t^6.74 + 2*t^6.77 + t^6.79 - t^6.84 + t^6.86 - t^6.89 + t^6.91 + 2*t^7.34 + 7*t^7.39 - t^7.41 + 8*t^7.44 - t^7.46 + 5*t^7.49 + 2*t^7.51 - t^7.53 + 2*t^7.54 + 3*t^7.56 + t^7.58 + t^7.61 + 2*t^7.63 + t^7.68 + t^7.96 + 4*t^8.01 + 3*t^8.06 + 2*t^8.11 - 2*t^8.13 + t^8.16 - 7*t^8.18 - t^8.23 - 2*t^8.25 + 7*t^8.28 - 5*t^8.3 + 8*t^8.33 + 3*t^8.39 + 2*t^8.41 - t^8.43 + t^8.46 + t^8.63 + 3*t^8.68 + 7*t^8.73 + t^8.75 + 5*t^8.78 + t^8.8 + 3*t^8.83 + 5*t^8.85 + t^8.87 + 2*t^8.88 + 6*t^8.9 + t^8.93 + 5*t^8.95 - t^8.97 + t^8.99 - t^4.51/y - t^6.7/y - t^6.75/y + t^7.37/y + (2*t^7.42)/y + t^7.44/y + (3*t^7.49)/y - t^7.59/y + (4*t^8.21)/y + (6*t^8.26)/y + t^8.28/y + (2*t^8.31)/y + (3*t^8.33)/y + (2*t^8.38)/y + (2*t^8.83)/y + (2*t^8.88)/y + t^8.95/y - t^8.98/y - t^4.51*y - t^6.7*y - t^6.75*y + t^7.37*y + 2*t^7.42*y + t^7.44*y + 3*t^7.49*y - t^7.59*y + 4*t^8.21*y + 6*t^8.26*y + t^8.28*y + 2*t^8.31*y + 3*t^8.33*y + 2*t^8.38*y + 2*t^8.83*y + 2*t^8.88*y + t^8.95*y - t^8.98*y (2*g2^7*t^2.18)/g1^5 + t^2.23/(g1^13*g2) + (g1^7*t^2.3)/g2^5 + (2*t^3.03)/(g1^4*g2^4) + (2*t^3.08)/(g1^12*g2^12) + g1*g2^13*t^3.65 + (g2^5*t^3.7)/g1^7 + (g2^22*t^4.32)/g1^2 + (3*g2^14*t^4.37)/g1^10 + (2*g2^6*t^4.42)/g1^18 + g1^10*g2^10*t^4.44 + t^4.47/(g1^26*g2^2) + 2*g1^2*g2^2*t^4.49 + t^4.54/(g1^6*g2^6) + (g1^22*t^4.56)/g2^2 + (g1^14*t^4.61)/g2^10 + (4*g2^3*t^5.21)/g1^9 + (5*t^5.26)/(g1^17*g2^5) + (2*t^5.31)/(g1^25*g2^13) + (2*g1^3*t^5.33)/g2^9 + t^5.38/(g1^5*g2^17) + (2*g2^20*t^5.83)/g1^4 + (2*g2^12*t^5.88)/g1^12 + (g2^4*t^5.93)/g1^20 - 3*t^6. + t^6.05/(g1^8*g2^8) + (4*t^6.1)/(g1^16*g2^16) - (g1^12*t^6.12)/g2^12 + (3*t^6.15)/(g1^24*g2^24) + (2*g2^29*t^6.5)/g1^7 + (5*g2^21*t^6.55)/g1^15 + (3*g2^13*t^6.6)/g1^23 + g1^5*g2^17*t^6.62 + (2*g2^5*t^6.65)/g1^31 + (4*g2^9*t^6.67)/g1^3 + t^6.7/(g1^39*g2^3) + (4*g2*t^6.72)/g1^11 + g1^17*g2^5*t^6.74 + (2*t^6.77)/(g1^19*g2^7) + (g1^9*t^6.79)/g2^3 - (g1*t^6.84)/g2^11 + (g1^29*t^6.86)/g2^7 - t^6.89/(g1^7*g2^19) + (g1^21*t^6.91)/g2^15 + (2*g2^18*t^7.34)/g1^6 + (7*g2^10*t^7.39)/g1^14 - g1^14*g2^14*t^7.41 + (8*g2^2*t^7.44)/g1^22 - g1^6*g2^6*t^7.46 + (5*t^7.49)/(g1^30*g2^6) + (2*t^7.51)/(g1^2*g2^2) - g1^26*g2^2*t^7.53 + (2*t^7.54)/(g1^38*g2^14) + (3*t^7.56)/(g1^10*g2^10) + (g1^18*t^7.58)/g2^6 + t^7.61/(g1^18*g2^18) + (2*g1^10*t^7.63)/g2^14 + (g1^2*t^7.68)/g2^22 + (g2^35*t^7.96)/g1 + (4*g2^27*t^8.01)/g1^9 + (3*g2^19*t^8.06)/g1^17 + (2*g2^11*t^8.11)/g1^25 - 2*g1^3*g2^15*t^8.13 + (g2^3*t^8.16)/g1^33 - (7*g2^7*t^8.18)/g1^5 - t^8.23/(g1^13*g2) - 2*g1^15*g2^3*t^8.25 + (7*t^8.28)/(g1^21*g2^9) - (5*g1^7*t^8.3)/g2^5 + (8*t^8.33)/(g1^29*g2^17) + (3*t^8.39)/(g1^37*g2^25) + (2*t^8.41)/(g1^9*g2^21) - (g1^19*t^8.43)/g2^17 + t^8.46/(g1^17*g2^29) + (g2^44*t^8.63)/g1^4 + (3*g2^36*t^8.68)/g1^12 + (7*g2^28*t^8.73)/g1^20 + g1^8*g2^32*t^8.75 + (5*g2^20*t^8.78)/g1^28 + g2^24*t^8.8 + (3*g2^12*t^8.83)/g1^36 + (5*g2^16*t^8.85)/g1^8 + g1^20*g2^20*t^8.87 + (2*g2^4*t^8.88)/g1^44 + (6*g2^8*t^8.9)/g1^16 + t^8.93/(g1^52*g2^4) + (5*t^8.95)/g1^24 - g1^4*g2^4*t^8.97 + g1^32*g2^8*t^8.99 - t^4.51/(g1^2*g2^2*y) - (g2^5*t^6.7)/(g1^7*y) - t^6.75/(g1^15*g2^3*y) + (g2^14*t^7.37)/(g1^10*y) + (2*g2^6*t^7.42)/(g1^18*y) + (g1^10*g2^10*t^7.44)/y + (3*g1^2*g2^2*t^7.49)/y - t^7.59/(g1^14*g2^14*y) + (4*g2^3*t^8.21)/(g1^9*y) + (6*t^8.26)/(g1^17*g2^5*y) + (g1^11*t^8.28)/(g2*y) + (2*t^8.31)/(g1^25*g2^13*y) + (3*g1^3*t^8.33)/(g2^9*y) + (2*t^8.38)/(g1^5*g2^17*y) + (2*g2^20*t^8.83)/(g1^4*y) + (2*g2^12*t^8.88)/(g1^12*y) + (g1^8*g2^8*t^8.95)/y - t^8.98/(g1^28*g2^4*y) - (t^4.51*y)/(g1^2*g2^2) - (g2^5*t^6.7*y)/g1^7 - (t^6.75*y)/(g1^15*g2^3) + (g2^14*t^7.37*y)/g1^10 + (2*g2^6*t^7.42*y)/g1^18 + g1^10*g2^10*t^7.44*y + 3*g1^2*g2^2*t^7.49*y - (t^7.59*y)/(g1^14*g2^14) + (4*g2^3*t^8.21*y)/g1^9 + (6*t^8.26*y)/(g1^17*g2^5) + (g1^11*t^8.28*y)/g2 + (2*t^8.31*y)/(g1^25*g2^13) + (3*g1^3*t^8.33*y)/g2^9 + (2*t^8.38*y)/(g1^5*g2^17) + (2*g2^20*t^8.83*y)/g1^4 + (2*g2^12*t^8.88*y)/g1^12 + g1^8*g2^8*t^8.95*y - (t^8.98*y)/(g1^28*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
344 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ 0.6064 0.7787 0.7788 [X:[], M:[0.9857, 1.043, 1.0143, 0.7364], q:[0.7464, 0.2679], qb:[0.4885, 0.4685], phi:[0.5072]] 2*t^2.21 + t^2.27 + 2*t^3.04 + 2*t^3.13 + t^3.64 + t^3.7 + t^3.73 + t^4.33 + t^4.39 + 3*t^4.42 + t^4.45 + 2*t^4.48 + t^4.54 + 4*t^5.25 + 2*t^5.31 + 3*t^5.34 + t^5.4 + 2*t^5.85 + 2*t^5.91 + t^5.94 + t^5.97 - 3*t^6. - t^4.52/y - t^4.52*y detail