Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
796 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ 0.7729 0.9519 0.812 [M:[0.7777, 0.7777, 0.8081, 0.7473, 0.7777, 1.1919], q:[0.6263, 0.596], qb:[0.596, 0.6263], phi:[0.3888]] [M:[[-2, -2], [-2, -2], [-4, 0], [0, -4], [-2, -2], [4, 0]], q:[[0, 2], [2, 0]], qb:[[2, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ -4 t^2.242 + 4*t^2.333 + t^3.576 + t^3.667 + t^4.484 + 4*t^4.575 + 10*t^4.666 + 3*t^4.742 + 4*t^4.833 + 3*t^4.925 + t^5.818 + t^5.909 - 4*t^6. - 4*t^6.091 + t^6.726 + 4*t^6.817 + 10*t^6.908 + 3*t^6.984 + 20*t^6.999 + 12*t^7.075 + t^7.152 + 12*t^7.167 + t^7.243 + 8*t^7.258 + t^8.06 + t^8.151 - 7*t^8.242 + 3*t^8.318 - 22*t^8.333 - 13*t^8.424 - 4*t^8.5 - 4*t^8.592 + t^8.968 - t^4.167/y - t^6.408/y - (4*t^6.5)/y + (4*t^7.575)/y + (6*t^7.666)/y + (4*t^7.833)/y + t^7.925/y - t^8.65/y - (4*t^8.742)/y + t^8.818/y - (10*t^8.833)/y + (5*t^8.909)/y - t^4.167*y - t^6.408*y - 4*t^6.5*y + 4*t^7.575*y + 6*t^7.666*y + 4*t^7.833*y + t^7.925*y - t^8.65*y - 4*t^8.742*y + t^8.818*y - 10*t^8.833*y + 5*t^8.909*y t^2.242/g2^4 + (4*t^2.333)/(g1^2*g2^2) + g1^4*t^3.576 + g1^2*g2^2*t^3.667 + t^4.484/g2^8 + (4*t^4.575)/(g1^2*g2^6) + (10*t^4.666)/(g1^4*g2^4) + (3*g1^3*t^4.742)/g2 + 4*g1*g2*t^4.833 + (3*g2^3*t^4.925)/g1 + (g1^4*t^5.818)/g2^4 + (g1^2*t^5.909)/g2^2 - 4*t^6. - (4*g2^2*t^6.091)/g1^2 + t^6.726/g2^12 + (4*t^6.817)/(g1^2*g2^10) + (10*t^6.908)/(g1^4*g2^8) + (3*g1^3*t^6.984)/g2^5 + (20*t^6.999)/(g1^6*g2^6) + (12*g1*t^7.075)/g2^3 + g1^8*t^7.152 + (12*t^7.167)/(g1*g2) + g1^6*g2^2*t^7.243 + (8*g2*t^7.258)/g1^3 + (g1^4*t^8.06)/g2^8 + (g1^2*t^8.151)/g2^6 - (7*t^8.242)/g2^4 + (3*g1^7*t^8.318)/g2 - (22*t^8.333)/(g1^2*g2^2) - (13*t^8.424)/g1^4 - 4*g1^3*g2^3*t^8.5 - 4*g1*g2^5*t^8.592 + t^8.968/g2^16 - t^4.167/(g1*g2*y) - t^6.408/(g1*g2^5*y) - (4*t^6.5)/(g1^3*g2^3*y) + (4*t^7.575)/(g1^2*g2^6*y) + (6*t^7.666)/(g1^4*g2^4*y) + (4*g1*g2*t^7.833)/y + (g2^3*t^7.925)/(g1*y) - t^8.65/(g1*g2^9*y) - (4*t^8.742)/(g1^3*g2^7*y) + (g1^4*t^8.818)/(g2^4*y) - (10*t^8.833)/(g1^5*g2^5*y) + (5*g1^2*t^8.909)/(g2^2*y) - (t^4.167*y)/(g1*g2) - (t^6.408*y)/(g1*g2^5) - (4*t^6.5*y)/(g1^3*g2^3) + (4*t^7.575*y)/(g1^2*g2^6) + (6*t^7.666*y)/(g1^4*g2^4) + 4*g1*g2*t^7.833*y + (g2^3*t^7.925*y)/g1 - (t^8.65*y)/(g1*g2^9) - (4*t^8.742*y)/(g1^3*g2^7) + (g1^4*t^8.818*y)/g2^4 - (10*t^8.833*y)/(g1^5*g2^5) + (5*g1^2*t^8.909*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
508 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.7904 0.9838 0.8034 [M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] 6*t^2.286 + t^3.714 + 21*t^4.571 + 10*t^4.857 - 10*t^6. - t^4.143/y - t^4.143*y detail {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21}