Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1755 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ | 0.6693 | 0.8377 | 0.7989 | [M:[0.6919, 0.7273, 0.6801, 1.2727, 0.6919], q:[0.8241, 0.8241], qb:[0.4841, 0.4605], phi:[0.3518]] | [M:[[-7, -1], [2, -10], [-10, 2], [-2, 10], [-7, -1]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ | -2 | t^2.04 + 2*t^2.076 + t^2.111 + t^2.834 + t^3.818 + 2*t^3.854 + t^3.889 + t^4.08 + 2*t^4.116 + 4*t^4.151 + 2*t^4.187 + t^4.222 + t^4.874 + 2*t^4.909 + 2*t^4.945 + t^5.667 + t^5.858 + 4*t^5.894 + 5*t^5.929 + 2*t^5.965 - 2*t^6. - 2*t^6.035 - t^6.071 + t^6.121 + 2*t^6.156 + 4*t^6.191 + 6*t^6.227 + 4*t^6.262 + 2*t^6.298 + t^6.333 + t^6.652 + 2*t^6.687 + t^6.723 + t^6.914 + 2*t^6.949 + 4*t^6.985 + 2*t^7.02 - 2*t^7.091 - t^7.126 + t^7.636 + 2*t^7.672 + 4*t^7.707 + 2*t^7.743 - 2*t^7.813 - t^7.849 + t^7.899 + 4*t^7.934 + 8*t^7.969 + 8*t^8.005 + t^8.04 - 6*t^8.076 - 6*t^8.111 - 4*t^8.146 + t^8.161 - t^8.182 + 2*t^8.196 + 4*t^8.231 + 6*t^8.267 + 9*t^8.302 + 6*t^8.338 + 4*t^8.373 + 2*t^8.408 + t^8.444 + t^8.501 + t^8.692 + 4*t^8.727 + 5*t^8.763 + 2*t^8.798 - 3*t^8.834 - 4*t^8.869 - 2*t^8.904 + t^8.954 + 2*t^8.989 - t^4.055/y - t^6.096/y - (2*t^6.131)/y - t^6.166/y + (2*t^7.116)/y + (2*t^7.151)/y + (2*t^7.187)/y + t^7.874/y + (2*t^7.909)/y + (2*t^7.945)/y + (2*t^7.98)/y + t^8.015/y - t^8.136/y - (2*t^8.171)/y - (4*t^8.207)/y - (2*t^8.242)/y - t^8.277/y + t^8.858/y + (4*t^8.894)/y + (6*t^8.929)/y + (4*t^8.965)/y - t^4.055*y - t^6.096*y - 2*t^6.131*y - t^6.166*y + 2*t^7.116*y + 2*t^7.151*y + 2*t^7.187*y + t^7.874*y + 2*t^7.909*y + 2*t^7.945*y + 2*t^7.98*y + t^8.015*y - t^8.136*y - 2*t^8.171*y - 4*t^8.207*y - 2*t^8.242*y - t^8.277*y + t^8.858*y + 4*t^8.894*y + 6*t^8.929*y + 4*t^8.965*y | (g2^2*t^2.04)/g1^10 + (2*t^2.076)/(g1^7*g2) + t^2.111/(g1^4*g2^4) + g1^6*g2^6*t^2.834 + (g2^10*t^3.818)/g1^2 + 2*g1*g2^7*t^3.854 + g1^4*g2^4*t^3.889 + (g2^4*t^4.08)/g1^20 + (2*g2*t^4.116)/g1^17 + (4*t^4.151)/(g1^14*g2^2) + (2*t^4.187)/(g1^11*g2^5) + t^4.222/(g1^8*g2^8) + (g2^8*t^4.874)/g1^4 + (2*g2^5*t^4.909)/g1 + 2*g1^2*g2^2*t^4.945 + g1^12*g2^12*t^5.667 + (g2^12*t^5.858)/g1^12 + (4*g2^9*t^5.894)/g1^9 + (5*g2^6*t^5.929)/g1^6 + (2*g2^3*t^5.965)/g1^3 - 2*t^6. - (2*g1^3*t^6.035)/g2^3 - (g1^6*t^6.071)/g2^6 + (g2^6*t^6.121)/g1^30 + (2*g2^3*t^6.156)/g1^27 + (4*t^6.191)/g1^24 + (6*t^6.227)/(g1^21*g2^3) + (4*t^6.262)/(g1^18*g2^6) + (2*t^6.298)/(g1^15*g2^9) + t^6.333/(g1^12*g2^12) + g1^4*g2^16*t^6.652 + 2*g1^7*g2^13*t^6.687 + g1^10*g2^10*t^6.723 + (g2^10*t^6.914)/g1^14 + (2*g2^7*t^6.949)/g1^11 + (4*g2^4*t^6.985)/g1^8 + (2*g2*t^7.02)/g1^5 - (2*g1*t^7.091)/g2^5 - (g1^4*t^7.126)/g2^8 + (g2^20*t^7.636)/g1^4 + (2*g2^17*t^7.672)/g1 + 4*g1^2*g2^14*t^7.707 + 2*g1^5*g2^11*t^7.743 - 2*g1^11*g2^5*t^7.813 - g1^14*g2^2*t^7.849 + (g2^14*t^7.899)/g1^22 + (4*g2^11*t^7.934)/g1^19 + (8*g2^8*t^7.969)/g1^16 + (8*g2^5*t^8.005)/g1^13 + (g2^2*t^8.04)/g1^10 - (6*t^8.076)/(g1^7*g2) - (6*t^8.111)/(g1^4*g2^4) - (4*t^8.146)/(g1*g2^7) + (g2^8*t^8.161)/g1^40 - (g1^2*t^8.182)/g2^10 + (2*g2^5*t^8.196)/g1^37 + (4*g2^2*t^8.231)/g1^34 + (6*t^8.267)/(g1^31*g2) + (9*t^8.302)/(g1^28*g2^4) + (6*t^8.338)/(g1^25*g2^7) + (4*t^8.373)/(g1^22*g2^10) + (2*t^8.408)/(g1^19*g2^13) + t^8.444/(g1^16*g2^16) + g1^18*g2^18*t^8.501 + (g2^18*t^8.692)/g1^6 + (4*g2^15*t^8.727)/g1^3 + 5*g2^12*t^8.763 + 2*g1^3*g2^9*t^8.798 - 3*g1^6*g2^6*t^8.834 - 4*g1^9*g2^3*t^8.869 - 2*g1^12*t^8.904 + (g2^12*t^8.954)/g1^24 + (2*g2^9*t^8.989)/g1^21 - t^4.055/(g1^2*g2^2*y) - t^6.096/(g1^12*y) - (2*t^6.131)/(g1^9*g2^3*y) - t^6.166/(g1^6*g2^6*y) + (2*g2*t^7.116)/(g1^17*y) + (2*t^7.151)/(g1^14*g2^2*y) + (2*t^7.187)/(g1^11*g2^5*y) + (g2^8*t^7.874)/(g1^4*y) + (2*g2^5*t^7.909)/(g1*y) + (2*g1^2*g2^2*t^7.945)/y + (2*g1^5*t^7.98)/(g2*y) + (g1^8*t^8.015)/(g2^4*y) - (g2^2*t^8.136)/(g1^22*y) - (2*t^8.171)/(g1^19*g2*y) - (4*t^8.207)/(g1^16*g2^4*y) - (2*t^8.242)/(g1^13*g2^7*y) - t^8.277/(g1^10*g2^10*y) + (g2^12*t^8.858)/(g1^12*y) + (4*g2^9*t^8.894)/(g1^9*y) + (6*g2^6*t^8.929)/(g1^6*y) + (4*g2^3*t^8.965)/(g1^3*y) - (t^4.055*y)/(g1^2*g2^2) - (t^6.096*y)/g1^12 - (2*t^6.131*y)/(g1^9*g2^3) - (t^6.166*y)/(g1^6*g2^6) + (2*g2*t^7.116*y)/g1^17 + (2*t^7.151*y)/(g1^14*g2^2) + (2*t^7.187*y)/(g1^11*g2^5) + (g2^8*t^7.874*y)/g1^4 + (2*g2^5*t^7.909*y)/g1 + 2*g1^2*g2^2*t^7.945*y + (2*g1^5*t^7.98*y)/g2 + (g1^8*t^8.015*y)/g2^4 - (g2^2*t^8.136*y)/g1^22 - (2*t^8.171*y)/(g1^19*g2) - (4*t^8.207*y)/(g1^16*g2^4) - (2*t^8.242*y)/(g1^13*g2^7) - (t^8.277*y)/(g1^10*g2^10) + (g2^12*t^8.858*y)/g1^12 + (4*g2^9*t^8.894*y)/g1^9 + (6*g2^6*t^8.929*y)/g1^6 + (4*g2^3*t^8.965*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
245 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{4}$ | 0.6486 | 0.7977 | 0.8132 | [M:[0.6962, 0.7272, 0.6859, 1.2728], q:[0.8234, 0.8234], qb:[0.4804, 0.4598], phi:[0.3533]] | t^2.058 + t^2.089 + t^2.12 + t^2.821 + t^3.819 + 2*t^3.849 + t^3.88 + t^3.911 + t^4.115 + t^4.146 + 2*t^4.177 + t^4.208 + t^4.239 + t^4.878 + t^4.909 + 2*t^4.94 + t^5.641 + t^5.876 + 3*t^5.907 + 3*t^5.938 + 2*t^5.969 - t^6. - t^4.06/y - t^4.06*y | detail |