Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2977 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2\tilde{q}_1$ | 0.7205 | 0.9585 | 0.7517 | [X:[], M:[0.827, 1.173, 0.827, 0.692, 0.673, 0.827, 0.673], q:[0.75, 0.423], qb:[0.404, 0.423], phi:[0.5]] | [X:[], M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [-1, -1], [0, -1], [0, 1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_7$, $ M_4$, $ M_6$, $ q_2\tilde{q}_1$, $ M_1$, $ M_3$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ M_5M_7$, $ \phi_1q_2\tilde{q}_2$, $ M_5^2$, $ \phi_1q_2^2$, $ M_7^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_5$, $ M_4M_7$, $ M_4^2$, $ M_1M_5$, $ M_3M_5$, $ M_5M_6$, $ M_1M_7$, $ M_3M_7$, $ M_6M_7$, $ M_5q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ M_1M_7$, $ M_3M_7$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_1M_4$, $ M_3M_4$, $ M_7q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_5\phi_1^2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_7\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4\phi_1^2$, $ q_2^2\tilde{q}_2^2$, $ M_6\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_7q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_6q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3q_1\tilde{q}_1$ | . | -4 | 2*t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + 6*t^4.04 + 2*t^4.09 + t^4.15 + 8*t^4.5 + 6*t^4.56 + t^4.61 + 10*t^4.96 + 6*t^5.02 + 2*t^5.08 + 6*t^5.48 + 2*t^5.54 + 2*t^5.94 - 4*t^6. + 8*t^6.06 + 6*t^6.11 + 2*t^6.17 + t^6.23 - t^6.46 + 20*t^6.52 + 14*t^6.58 + 6*t^6.63 + t^6.69 + 16*t^6.98 + 20*t^7.04 + 8*t^7.09 + 2*t^7.15 + 16*t^7.44 + 16*t^7.5 + 8*t^7.56 + 3*t^7.61 + 10*t^7.96 - 6*t^8.02 + 12*t^8.08 + 8*t^8.13 + 6*t^8.19 + 2*t^8.25 + t^8.3 + 2*t^8.42 - 20*t^8.48 + 19*t^8.54 + 28*t^8.59 + 14*t^8.65 + 6*t^8.71 + t^8.77 - 6*t^8.94 - t^4.5/y - (2*t^6.52)/y - t^6.58/y - (2*t^6.98)/y + t^7.04/y + (2*t^7.09)/y + (8*t^7.5)/y + (6*t^7.56)/y + t^7.61/y + (6*t^7.96)/y + (8*t^8.02)/y + t^8.08/y + t^8.42/y + (8*t^8.48)/y - t^8.54/y - (2*t^8.59)/y - t^8.65/y + (4*t^8.94)/y - t^4.5*y - 2*t^6.52*y - t^6.58*y - 2*t^6.98*y + t^7.04*y + 2*t^7.09*y + 8*t^7.5*y + 6*t^7.56*y + t^7.61*y + 6*t^7.96*y + 8*t^8.02*y + t^8.08*y + t^8.42*y + 8*t^8.48*y - t^8.54*y - 2*t^8.59*y - t^8.65*y + 4*t^8.94*y | t^2.02/(g1*g2) + g2*t^2.02 + t^2.08/g1^2 + (2*t^2.48)/g2 + 2*g1*g2*t^2.48 + t^2.54/g1 + t^3. + g1*t^3.46 + (2*t^4.04)/g1 + (2*t^4.04)/(g1^2*g2^2) + 2*g2^2*t^4.04 + t^4.09/(g1^3*g2) + (g2*t^4.09)/g1^2 + t^4.15/g1^4 + 4*t^4.5 + (2*t^4.5)/(g1*g2^2) + 2*g1*g2^2*t^4.5 + (3*t^4.56)/(g1^2*g2) + (3*g2*t^4.56)/g1 + t^4.61/g1^3 + 4*g1*t^4.96 + (3*t^4.96)/g2^2 + 3*g1^2*g2^2*t^4.96 + (3*t^5.02)/(g1*g2) + 3*g2*t^5.02 + (2*t^5.08)/g1^2 + (3*t^5.48)/g2 + 3*g1*g2*t^5.48 + (2*t^5.54)/g1 + (g1*t^5.94)/g2 + g1^2*g2*t^5.94 - 2*t^6. - t^6./(g1*g2^2) - g1*g2^2*t^6. + (2*t^6.06)/(g1^3*g2^3) + (2*t^6.06)/(g1^2*g2) + (2*g2*t^6.06)/g1 + 2*g2^3*t^6.06 + (2*t^6.11)/g1^3 + (2*t^6.11)/(g1^4*g2^2) + (2*g2^2*t^6.11)/g1^2 + t^6.17/(g1^5*g2) + (g2*t^6.17)/g1^4 + t^6.23/g1^6 - g1*t^6.46 + (4*t^6.52)/(g1^2*g2^3) + (6*t^6.52)/(g1*g2) + 6*g2*t^6.52 + 4*g1*g2^3*t^6.52 + (6*t^6.58)/g1^2 + (4*t^6.58)/(g1^3*g2^2) + (4*g2^2*t^6.58)/g1 + (3*t^6.63)/(g1^4*g2) + (3*g2*t^6.63)/g1^3 + t^6.69/g1^5 + (3*t^6.98)/(g1*g2^3) + (5*t^6.98)/g2 + 5*g1*g2*t^6.98 + 3*g1^2*g2^3*t^6.98 + (8*t^7.04)/g1 + (6*t^7.04)/(g1^2*g2^2) + 6*g2^2*t^7.04 + (4*t^7.09)/(g1^3*g2) + (4*g2*t^7.09)/g1^2 + (2*t^7.15)/g1^4 + (4*t^7.44)/g2^3 + (4*g1*t^7.44)/g2 + 4*g1^2*g2*t^7.44 + 4*g1^3*g2^3*t^7.44 + 6*t^7.5 + (5*t^7.5)/(g1*g2^2) + 5*g1*g2^2*t^7.5 + (4*t^7.56)/(g1^2*g2) + (4*g2*t^7.56)/g1 + (3*t^7.61)/g1^3 + 4*g1*t^7.96 + (3*t^7.96)/g2^2 + 3*g1^2*g2^2*t^7.96 - t^8.02/(g1^2*g2^3) - (2*t^8.02)/(g1*g2) - 2*g2*t^8.02 - g1*g2^3*t^8.02 + (2*t^8.08)/g1^2 + (3*t^8.08)/(g1^4*g2^4) + (2*t^8.08)/(g1^3*g2^2) + (2*g2^2*t^8.08)/g1 + 3*g2^4*t^8.08 + (2*t^8.13)/(g1^5*g2^3) + (2*t^8.13)/(g1^4*g2) + (2*g2*t^8.13)/g1^3 + (2*g2^3*t^8.13)/g1^2 + (2*t^8.19)/g1^5 + (2*t^8.19)/(g1^6*g2^2) + (2*g2^2*t^8.19)/g1^4 + t^8.25/(g1^7*g2) + (g2*t^8.25)/g1^6 + t^8.3/g1^8 + (g1*t^8.42)/g2^2 + g1^3*g2^2*t^8.42 - (2*t^8.48)/(g1*g2^3) - (8*t^8.48)/g2 - 8*g1*g2*t^8.48 - 2*g1^2*g2^3*t^8.48 + t^8.54/g1 + (4*t^8.54)/(g1^3*g2^4) + (5*t^8.54)/(g1^2*g2^2) + 5*g2^2*t^8.54 + 4*g1*g2^4*t^8.54 + (6*t^8.59)/(g1^4*g2^3) + (8*t^8.59)/(g1^3*g2) + (8*g2*t^8.59)/g1^2 + (6*g2^3*t^8.59)/g1 + (6*t^8.65)/g1^4 + (4*t^8.65)/(g1^5*g2^2) + (4*g2^2*t^8.65)/g1^3 + (3*t^8.71)/(g1^6*g2) + (3*g2*t^8.71)/g1^5 + t^8.77/g1^7 - (3*g1*t^8.94)/g2 - 3*g1^2*g2*t^8.94 - t^4.5/y - t^6.52/(g1*g2*y) - (g2*t^6.52)/y - t^6.58/(g1^2*y) - t^6.98/(g2*y) - (g1*g2*t^6.98)/y + t^7.04/(g1*y) + t^7.09/(g1^3*g2*y) + (g2*t^7.09)/(g1^2*y) + (4*t^7.5)/y + (2*t^7.5)/(g1*g2^2*y) + (2*g1*g2^2*t^7.5)/y + (3*t^7.56)/(g1^2*g2*y) + (3*g2*t^7.56)/(g1*y) + t^7.61/(g1^3*y) + (4*g1*t^7.96)/y + t^7.96/(g2^2*y) + (g1^2*g2^2*t^7.96)/y + (4*t^8.02)/(g1*g2*y) + (4*g2*t^8.02)/y + t^8.08/(g1^2*y) + (g1^2*t^8.42)/y + (4*t^8.48)/(g2*y) + (4*g1*g2*t^8.48)/y + t^8.54/(g1*y) - t^8.54/(g1^2*g2^2*y) - (g2^2*t^8.54)/y - t^8.59/(g1^3*g2*y) - (g2*t^8.59)/(g1^2*y) - t^8.65/(g1^4*y) + (2*g1*t^8.94)/(g2*y) + (2*g1^2*g2*t^8.94)/y - t^4.5*y - (t^6.52*y)/(g1*g2) - g2*t^6.52*y - (t^6.58*y)/g1^2 - (t^6.98*y)/g2 - g1*g2*t^6.98*y + (t^7.04*y)/g1 + (t^7.09*y)/(g1^3*g2) + (g2*t^7.09*y)/g1^2 + 4*t^7.5*y + (2*t^7.5*y)/(g1*g2^2) + 2*g1*g2^2*t^7.5*y + (3*t^7.56*y)/(g1^2*g2) + (3*g2*t^7.56*y)/g1 + (t^7.61*y)/g1^3 + 4*g1*t^7.96*y + (t^7.96*y)/g2^2 + g1^2*g2^2*t^7.96*y + (4*t^8.02*y)/(g1*g2) + 4*g2*t^8.02*y + (t^8.08*y)/g1^2 + g1^2*t^8.42*y + (4*t^8.48*y)/g2 + 4*g1*g2*t^8.48*y + (t^8.54*y)/g1 - (t^8.54*y)/(g1^2*g2^2) - g2^2*t^8.54*y - (t^8.59*y)/(g1^3*g2) - (g2*t^8.59*y)/g1^2 - (t^8.65*y)/g1^4 + (2*g1*t^8.94*y)/g2 + 2*g1^2*g2*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1938 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ | 0.6997 | 0.9172 | 0.7628 | [X:[], M:[0.8275, 1.1725, 0.8275, 0.6927, 0.6725, 0.8261], q:[0.75, 0.4225], qb:[0.4036, 0.4239], phi:[0.5]] | t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + t^3.98 + 2*t^4.03 + 2*t^4.04 + t^4.1 + t^4.16 + 4*t^4.5 + 5*t^4.56 + t^4.62 + 7*t^4.96 + 3*t^4.97 + 5*t^5.02 + 2*t^5.08 + 5*t^5.48 + 2*t^5.54 + 2*t^5.94 - 3*t^6. - t^4.5/y - t^4.5*y | detail |