Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1938 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ 0.6997 0.9172 0.7628 [X:[], M:[0.8275, 1.1725, 0.8275, 0.6927, 0.6725, 0.8261], q:[0.75, 0.4225], qb:[0.4036, 0.4239], phi:[0.5]] [X:[], M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [-1, -1], [0, -1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_4$, $ M_6$, $ q_2\tilde{q}_1$, $ M_1$, $ M_3$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_5^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_5$, $ M_4^2$, $ M_1M_5$, $ M_3M_5$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_1M_4$, $ M_3M_4$, $ M_4q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_5\phi_1^2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4\phi_1^2$, $ q_2^2\tilde{q}_2^2$, $ M_6\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_6q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3q_1\tilde{q}_1$ $M_5\phi_1q_2\tilde{q}_1$ -3 t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + t^3.98 + 2*t^4.03 + 2*t^4.04 + t^4.1 + t^4.16 + 4*t^4.5 + 5*t^4.56 + t^4.62 + 7*t^4.96 + 3*t^4.97 + 5*t^5.02 + 2*t^5.08 + 5*t^5.48 + 2*t^5.54 + 2*t^5.94 - 3*t^6. + 2*t^6.05 + t^6.06 + 2*t^6.11 + 2*t^6.12 + t^6.17 + t^6.23 + 3*t^6.46 + 4*t^6.51 + 7*t^6.52 + 2*t^6.53 + 4*t^6.57 + 4*t^6.58 + 3*t^6.63 + 2*t^6.64 + t^6.7 + 3*t^6.97 + 4*t^6.98 + 6*t^7.03 + 8*t^7.04 + 6*t^7.1 + 2*t^7.16 + 4*t^7.43 + 9*t^7.44 + 4*t^7.45 + 10*t^7.5 + 6*t^7.56 + 3*t^7.62 + 7*t^7.96 + 2*t^7.97 + t^8.01 + t^8.02 + 4*t^8.07 + t^8.09 + 3*t^8.13 + 2*t^8.19 + 2*t^8.2 + t^8.25 + t^8.31 + t^8.42 + t^8.43 - 13*t^8.48 - 2*t^8.49 + 8*t^8.53 - 4*t^8.54 + 6*t^8.59 + 9*t^8.6 + 4*t^8.65 + 4*t^8.66 + 3*t^8.71 + 2*t^8.72 + t^8.77 + 3*t^8.93 + t^8.94 + 6*t^8.99 - t^4.5/y - t^6.52/y - t^6.58/y - (2*t^6.98)/y + t^7.1/y + (4*t^7.5)/y + (5*t^7.56)/y + t^7.62/y + (5*t^7.96)/y + t^7.97/y + (7*t^8.02)/y + t^8.08/y + t^8.42/y + (6*t^8.48)/y - t^8.53/y + (2*t^8.54)/y - t^8.6/y - t^8.66/y + (4*t^8.94)/y - t^4.5*y - t^6.52*y - t^6.58*y - 2*t^6.98*y + t^7.1*y + 4*t^7.5*y + 5*t^7.56*y + t^7.62*y + 5*t^7.96*y + t^7.97*y + 7*t^8.02*y + t^8.08*y + t^8.42*y + 6*t^8.48*y - t^8.53*y + 2*t^8.54*y - t^8.6*y - t^8.66*y + 4*t^8.94*y t^2.02/(g1*g2) + t^2.08/g1^2 + (2*t^2.48)/g2 + 2*g1*g2*t^2.48 + t^2.54/g1 + t^3. + g1*t^3.46 + t^3.98/g2 + (2*t^4.03)/(g1^2*g2^2) + t^4.04/g1 + g2^2*t^4.04 + t^4.1/(g1^3*g2) + t^4.16/g1^4 + 2*t^4.5 + (2*t^4.5)/(g1*g2^2) + (3*t^4.56)/(g1^2*g2) + (2*g2*t^4.56)/g1 + t^4.62/g1^3 + 4*g1*t^4.96 + (3*t^4.96)/g2^2 + 3*g1^2*g2^2*t^4.97 + (3*t^5.02)/(g1*g2) + 2*g2*t^5.02 + (2*t^5.08)/g1^2 + (3*t^5.48)/g2 + 2*g1*g2*t^5.48 + (2*t^5.54)/g1 + (g1*t^5.94)/g2 + g1^2*g2*t^5.94 - 2*t^6. - g1*g2^2*t^6. + (2*t^6.05)/(g1^3*g2^3) + t^6.06/(g1^2*g2) + (2*t^6.11)/(g1^4*g2^2) + t^6.12/g1^3 + (g2^2*t^6.12)/g1^2 + t^6.17/(g1^5*g2) + t^6.23/g1^6 + g1*t^6.46 + (2*t^6.46)/g2^2 + (4*t^6.51)/(g1^2*g2^3) + (5*t^6.52)/(g1*g2) + 2*g2*t^6.52 + 2*g1*g2^3*t^6.53 + (4*t^6.57)/(g1^3*g2^2) + (3*t^6.58)/g1^2 + (g2^2*t^6.58)/g1 + (3*t^6.63)/(g1^4*g2) + (2*g2*t^6.64)/g1^3 + t^6.7/g1^5 + (3*t^6.97)/(g1*g2^3) + (3*t^6.98)/g2 + g1*g2*t^6.98 + (6*t^7.03)/(g1^2*g2^2) + (5*t^7.04)/g1 + 3*g2^2*t^7.04 + (4*t^7.1)/(g1^3*g2) + (2*g2*t^7.1)/g1^2 + (2*t^7.16)/g1^4 + (4*t^7.43)/g2^3 + (5*g1*t^7.44)/g2 + 4*g1^2*g2*t^7.44 + 4*g1^3*g2^3*t^7.45 + 3*t^7.5 + (5*t^7.5)/(g1*g2^2) + 2*g1*g2^2*t^7.5 + (4*t^7.56)/(g1^2*g2) + (2*g2*t^7.56)/g1 + (3*t^7.62)/g1^3 + 3*g1*t^7.96 + (4*t^7.96)/g2^2 + 2*g1^2*g2^2*t^7.97 + t^8.01/(g1^2*g2^3) + g2*t^8.02 + (3*t^8.07)/(g1^4*g2^4) + t^8.07/(g1^3*g2^2) + g2^4*t^8.09 + (2*t^8.13)/(g1^5*g2^3) + t^8.13/(g1^4*g2) + (2*t^8.19)/(g1^6*g2^2) + t^8.2/g1^5 + (g2^2*t^8.2)/g1^4 + t^8.25/(g1^7*g2) + t^8.31/g1^8 + (g1*t^8.42)/g2^2 + g1^3*g2^2*t^8.43 - (6*t^8.48)/g2 - 7*g1*g2*t^8.48 - 2*g1^2*g2^3*t^8.49 + (4*t^8.53)/(g1^3*g2^4) + (4*t^8.53)/(g1^2*g2^2) - (3*t^8.54)/g1 - g2^2*t^8.54 + (6*t^8.59)/(g1^4*g2^3) + (5*t^8.6)/(g1^3*g2) + (2*g2*t^8.6)/g1^2 + (2*g2^3*t^8.6)/g1 + (4*t^8.65)/(g1^5*g2^2) + (3*t^8.66)/g1^4 + (g2^2*t^8.66)/g1^3 + (3*t^8.71)/(g1^6*g2) + (2*g2*t^8.72)/g1^5 + t^8.77/g1^7 + (3*t^8.93)/g2^3 + (g1*t^8.94)/g2 + (6*t^8.99)/(g1^2*g2^4) - t^4.5/y - t^6.52/(g1*g2*y) - t^6.58/(g1^2*y) - t^6.98/(g2*y) - (g1*g2*t^6.98)/y + t^7.1/(g1^3*g2*y) + (2*t^7.5)/y + (2*t^7.5)/(g1*g2^2*y) + (3*t^7.56)/(g1^2*g2*y) + (2*g2*t^7.56)/(g1*y) + t^7.62/(g1^3*y) + (4*g1*t^7.96)/y + t^7.96/(g2^2*y) + (g1^2*g2^2*t^7.97)/y + (4*t^8.02)/(g1*g2*y) + (3*g2*t^8.02)/y + t^8.08/(g1^2*y) + (g1^2*t^8.42)/y + (3*t^8.48)/(g2*y) + (3*g1*g2*t^8.48)/y - t^8.53/(g1^2*g2^2*y) + (2*t^8.54)/(g1*y) - t^8.6/(g1^3*g2*y) - t^8.66/(g1^4*y) + (2*g1*t^8.94)/(g2*y) + (2*g1^2*g2*t^8.94)/y - t^4.5*y - (t^6.52*y)/(g1*g2) - (t^6.58*y)/g1^2 - (t^6.98*y)/g2 - g1*g2*t^6.98*y + (t^7.1*y)/(g1^3*g2) + 2*t^7.5*y + (2*t^7.5*y)/(g1*g2^2) + (3*t^7.56*y)/(g1^2*g2) + (2*g2*t^7.56*y)/g1 + (t^7.62*y)/g1^3 + 4*g1*t^7.96*y + (t^7.96*y)/g2^2 + g1^2*g2^2*t^7.97*y + (4*t^8.02*y)/(g1*g2) + 3*g2*t^8.02*y + (t^8.08*y)/g1^2 + g1^2*t^8.42*y + (3*t^8.48*y)/g2 + 3*g1*g2*t^8.48*y - (t^8.53*y)/(g1^2*g2^2) + (2*t^8.54*y)/g1 - (t^8.6*y)/(g1^3*g2) - (t^8.66*y)/g1^4 + (2*g1*t^8.94*y)/g2 + 2*g1^2*g2*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2977 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2\tilde{q}_1$ 0.7205 0.9585 0.7517 [X:[], M:[0.827, 1.173, 0.827, 0.692, 0.673, 0.827, 0.673], q:[0.75, 0.423], qb:[0.404, 0.423], phi:[0.5]] 2*t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + 6*t^4.04 + 2*t^4.09 + t^4.15 + 8*t^4.5 + 6*t^4.56 + t^4.61 + 10*t^4.96 + 6*t^5.02 + 2*t^5.08 + 6*t^5.48 + 2*t^5.54 + 2*t^5.94 - 4*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
569 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.6855 0.8931 0.7675 [X:[], M:[0.8163, 1.1837, 0.8163, 0.6776, 0.6837], q:[0.75, 0.4337], qb:[0.4112, 0.4051], phi:[0.5]] t^2.03 + t^2.05 + 2*t^2.45 + t^2.52 + t^2.53 + t^3. + t^3.47 + t^3.48 + t^3.93 + t^4.02 + t^4.03 + t^4.07 + t^4.08 + 2*t^4.1 + 2*t^4.48 + 2*t^4.5 + t^4.55 + 2*t^4.57 + t^4.59 + 3*t^4.9 + 2*t^4.97 + 2*t^4.98 + 2*t^5.03 + 2*t^5.05 + t^5.07 + 2*t^5.45 + t^5.5 + 3*t^5.52 + 2*t^5.53 + t^5.91 + t^5.93 + t^5.96 + t^5.98 - t^6. - t^4.5/y - t^4.5*y detail