Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3423 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5q_1q_2$ + $ M_6q_1\tilde{q}_1$ + $ M_1M_7$ | 0.7205 | 0.9585 | 0.7517 | [X:[], M:[1.154, 0.692, 0.673, 0.673, 0.827, 0.827, 0.846], q:[0.75, 0.423], qb:[0.423, 0.404], phi:[0.5]] | [X:[], M:[[2], [-4], [-1], [-1], [1], [1], [-2]], q:[[0], [-1]], qb:[[-1], [2]], phi:[[0]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_4$, $ M_2$, $ M_5$, $ M_6$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_7$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2M_3$, $ M_2M_4$, $ M_2^2$, $ M_3M_5$, $ M_4M_5$, $ M_3M_6$, $ M_4M_6$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_2M_6$, $ M_3M_7$, $ M_4M_7$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2M_7$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_5M_7$, $ M_6M_7$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_7q_2\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_7\phi_1^2$, $ M_2q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ | $M_7q_1\tilde{q}_2$ | -4 | 2*t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + 6*t^4.04 + 2*t^4.09 + t^4.15 + 8*t^4.5 + 6*t^4.56 + t^4.61 + 10*t^4.96 + 6*t^5.02 + 2*t^5.08 + 6*t^5.48 + 2*t^5.54 + 2*t^5.94 - 4*t^6. + 8*t^6.06 + 6*t^6.11 + 2*t^6.17 + t^6.23 - t^6.46 + 20*t^6.52 + 14*t^6.58 + 6*t^6.63 + t^6.69 + 16*t^6.98 + 20*t^7.04 + 8*t^7.09 + 2*t^7.15 + 16*t^7.44 + 16*t^7.5 + 8*t^7.56 + 3*t^7.61 + 10*t^7.96 - 6*t^8.02 + 12*t^8.08 + 8*t^8.13 + 6*t^8.19 + 2*t^8.25 + t^8.3 + 2*t^8.42 - 20*t^8.48 + 19*t^8.54 + 28*t^8.59 + 14*t^8.65 + 6*t^8.71 + t^8.77 - 6*t^8.94 - t^4.5/y - (2*t^6.52)/y - t^6.58/y - (2*t^6.98)/y + t^7.04/y + (2*t^7.09)/y + (8*t^7.5)/y + (6*t^7.56)/y + t^7.61/y + (6*t^7.96)/y + (8*t^8.02)/y + t^8.08/y + t^8.42/y + (8*t^8.48)/y - t^8.54/y - (2*t^8.59)/y - t^8.65/y + (4*t^8.94)/y - t^4.5*y - 2*t^6.52*y - t^6.58*y - 2*t^6.98*y + t^7.04*y + 2*t^7.09*y + 8*t^7.5*y + 6*t^7.56*y + t^7.61*y + 6*t^7.96*y + 8*t^8.02*y + t^8.08*y + t^8.42*y + 8*t^8.48*y - t^8.54*y - 2*t^8.59*y - t^8.65*y + 4*t^8.94*y | (2*t^2.02)/g1 + t^2.08/g1^4 + 4*g1*t^2.48 + t^2.54/g1^2 + t^3. + g1^2*t^3.46 + (6*t^4.04)/g1^2 + (2*t^4.09)/g1^5 + t^4.15/g1^8 + 8*t^4.5 + (6*t^4.56)/g1^3 + t^4.61/g1^6 + 10*g1^2*t^4.96 + (6*t^5.02)/g1 + (2*t^5.08)/g1^4 + 6*g1*t^5.48 + (2*t^5.54)/g1^2 + 2*g1^3*t^5.94 - 4*t^6. + (8*t^6.06)/g1^3 + (6*t^6.11)/g1^6 + (2*t^6.17)/g1^9 + t^6.23/g1^12 - g1^2*t^6.46 + (20*t^6.52)/g1 + (14*t^6.58)/g1^4 + (6*t^6.63)/g1^7 + t^6.69/g1^10 + 16*g1*t^6.98 + (20*t^7.04)/g1^2 + (8*t^7.09)/g1^5 + (2*t^7.15)/g1^8 + 16*g1^3*t^7.44 + 16*t^7.5 + (8*t^7.56)/g1^3 + (3*t^7.61)/g1^6 + 10*g1^2*t^7.96 - (6*t^8.02)/g1 + (12*t^8.08)/g1^4 + (8*t^8.13)/g1^7 + (6*t^8.19)/g1^10 + (2*t^8.25)/g1^13 + t^8.3/g1^16 + 2*g1^4*t^8.42 - 20*g1*t^8.48 + (19*t^8.54)/g1^2 + (28*t^8.59)/g1^5 + (14*t^8.65)/g1^8 + (6*t^8.71)/g1^11 + t^8.77/g1^14 - 6*g1^3*t^8.94 - t^4.5/y - (2*t^6.52)/(g1*y) - t^6.58/(g1^4*y) - (2*g1*t^6.98)/y + t^7.04/(g1^2*y) + (2*t^7.09)/(g1^5*y) + (8*t^7.5)/y + (6*t^7.56)/(g1^3*y) + t^7.61/(g1^6*y) + (6*g1^2*t^7.96)/y + (8*t^8.02)/(g1*y) + t^8.08/(g1^4*y) + (g1^4*t^8.42)/y + (8*g1*t^8.48)/y - t^8.54/(g1^2*y) - (2*t^8.59)/(g1^5*y) - t^8.65/(g1^8*y) + (4*g1^3*t^8.94)/y - t^4.5*y - (2*t^6.52*y)/g1 - (t^6.58*y)/g1^4 - 2*g1*t^6.98*y + (t^7.04*y)/g1^2 + (2*t^7.09*y)/g1^5 + 8*t^7.5*y + (6*t^7.56*y)/g1^3 + (t^7.61*y)/g1^6 + 6*g1^2*t^7.96*y + (8*t^8.02*y)/g1 + (t^8.08*y)/g1^4 + g1^4*t^8.42*y + 8*g1*t^8.48*y - (t^8.54*y)/g1^2 - (2*t^8.59*y)/g1^5 - (t^8.65*y)/g1^8 + 4*g1^3*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2858 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5q_1q_2$ + $ M_6q_1\tilde{q}_1$ | 0.7076 | 0.9351 | 0.7567 | [X:[], M:[1.1397, 0.7206, 0.6801, 0.6801, 0.8199, 0.8199], q:[0.75, 0.4301], qb:[0.4301, 0.3897], phi:[0.5]] | 2*t^2.04 + t^2.16 + 4*t^2.46 + t^3. + 2*t^3.42 + 6*t^4.08 + 2*t^4.2 + t^4.32 + 8*t^4.5 + 4*t^4.62 + 10*t^4.92 + 2*t^5.04 + t^5.16 + 8*t^5.46 + 2*t^5.58 + 6*t^5.88 - 5*t^6. - t^4.5/y - t^4.5*y | detail |