Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55650 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{1}^{2}$ 0.655 0.8217 0.7971 [M:[1.1534, 0.7168, 0.8466, 1.231, 0.8212, 0.6914, 0.7944], q:[0.4106, 0.436], qb:[0.8726, 0.7429], phi:[0.3845]] [M:[[-3, -3], [2, 4], [3, 3], [2, 2], [-6, -8], [-7, -7], [7, 9]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{2}$, ${ }M_{7}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{7}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{7}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}q_{1}q_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$ ${}$ -2 t^2.074 + t^2.15 + t^2.383 + t^2.463 + t^2.54 + t^3.46 + 2*t^3.693 + t^3.769 + t^4.148 + t^4.224 + t^4.301 + t^4.457 + t^4.533 + t^4.538 + 2*t^4.614 + t^4.69 + t^4.766 + 2*t^4.847 + t^4.923 + t^4.927 + t^5.003 + t^5.079 + t^5.534 + t^5.611 + t^5.767 + 3*t^5.843 + t^5.92 - 2*t^6. + t^6.076 + t^6.152 + t^6.157 + t^6.222 + 2*t^6.233 + t^6.299 + t^6.309 + t^6.375 + t^6.451 + t^6.531 + t^6.608 + t^6.612 + t^6.684 + 2*t^6.688 + 2*t^6.764 + 2*t^6.84 + t^6.917 + 2*t^6.921 + 2*t^6.997 + t^7.001 + t^7.073 + t^7.077 + t^7.149 + t^7.153 + 2*t^7.23 + t^7.306 + t^7.386 + t^7.39 + 2*t^7.462 + t^7.467 + t^7.539 + t^7.609 + t^7.685 + t^7.761 + t^7.841 + 2*t^7.918 + 3*t^7.994 + t^8.07 - 2*t^8.074 - 2*t^8.15 + 2*t^8.227 + t^8.297 + t^8.303 + 2*t^8.307 + t^8.373 - t^8.383 + t^8.449 + 2*t^8.459 - 4*t^8.463 + t^8.525 + t^8.535 - 2*t^8.54 + t^8.601 + t^8.606 + t^8.616 + t^8.62 + t^8.682 + t^8.686 + t^8.692 + t^8.758 + 2*t^8.762 + t^8.772 + t^8.834 + 2*t^8.838 + t^8.849 + 3*t^8.914 + 2*t^8.991 + 2*t^8.995 - t^4.153/y - t^6.228/y - t^6.304/y - t^6.537/y - t^6.617/y + t^7.224/y + t^7.457/y + t^7.533/y + t^7.538/y + (2*t^7.614)/y + (2*t^7.69)/y + t^7.77/y + t^7.847/y + t^7.923/y + (2*t^8.003)/y + t^8.079/y - t^8.302/y - t^8.378/y - t^8.454/y + t^8.534/y - t^8.687/y - t^8.691/y + t^8.767/y + (4*t^8.843)/y + t^8.924/y - t^4.153*y - t^6.228*y - t^6.304*y - t^6.537*y - t^6.617*y + t^7.224*y + t^7.457*y + t^7.533*y + t^7.538*y + 2*t^7.614*y + 2*t^7.69*y + t^7.77*y + t^7.847*y + t^7.923*y + 2*t^8.003*y + t^8.079*y - t^8.302*y - t^8.378*y - t^8.454*y + t^8.534*y - t^8.687*y - t^8.691*y + t^8.767*y + 4*t^8.843*y + t^8.924*y t^2.074/(g1^7*g2^7) + g1^2*g2^4*t^2.15 + g1^7*g2^9*t^2.383 + t^2.463/(g1^6*g2^8) + g1^3*g2^3*t^2.54 + t^3.46/(g1^3*g2^3) + 2*g1^2*g2^2*t^3.693 + g1^11*g2^13*t^3.769 + t^4.148/(g1^14*g2^14) + t^4.224/(g1^5*g2^3) + g1^4*g2^8*t^4.301 + g2^2*t^4.457 + g1^9*g2^13*t^4.533 + t^4.538/(g1^13*g2^15) + (2*t^4.614)/(g1^4*g2^4) + g1^5*g2^7*t^4.69 + g1^14*g2^18*t^4.766 + 2*g1*g2*t^4.847 + g1^10*g2^12*t^4.923 + t^4.927/(g1^12*g2^16) + t^5.003/(g1^3*g2^5) + g1^6*g2^6*t^5.079 + t^5.534/(g1^10*g2^10) + (g2*t^5.611)/g1 + t^5.767/(g1^5*g2^5) + 3*g1^4*g2^6*t^5.843 + g1^13*g2^17*t^5.92 - 2*t^6. + g1^9*g2^11*t^6.076 + g1^18*g2^22*t^6.152 + t^6.157/(g1^4*g2^6) + t^6.222/(g1^21*g2^21) + 2*g1^5*g2^5*t^6.233 + t^6.299/(g1^12*g2^10) + g1^14*g2^16*t^6.309 + (g2*t^6.375)/g1^3 + g1^6*g2^12*t^6.451 + t^6.531/(g1^7*g2^5) + g1^2*g2^6*t^6.608 + t^6.612/(g1^20*g2^22) + g1^11*g2^17*t^6.684 + (2*t^6.688)/(g1^11*g2^11) + (2*t^6.764)/g1^2 + 2*g1^7*g2^11*t^6.84 + g1^16*g2^22*t^6.917 + (2*t^6.921)/(g1^6*g2^6) + 2*g1^3*g2^5*t^6.997 + t^7.001/(g1^19*g2^23) + g1^12*g2^16*t^7.073 + t^7.077/(g1^10*g2^12) + g1^21*g2^27*t^7.149 + t^7.153/(g1*g2) + 2*g1^8*g2^10*t^7.23 + g1^17*g2^21*t^7.306 + g1^4*g2^4*t^7.386 + t^7.39/(g1^18*g2^24) + 2*g1^13*g2^15*t^7.462 + t^7.467/(g1^9*g2^13) + g1^22*g2^26*t^7.539 + t^7.609/(g1^17*g2^17) + t^7.685/(g1^8*g2^6) + g1*g2^5*t^7.761 + t^7.841/(g1^12*g2^12) + (2*t^7.918)/(g1^3*g2) + 3*g1^6*g2^10*t^7.994 + g1^15*g2^21*t^8.07 - (2*t^8.074)/(g1^7*g2^7) - 2*g1^2*g2^4*t^8.15 + 2*g1^11*g2^15*t^8.227 + t^8.297/(g1^28*g2^28) + g1^20*g2^26*t^8.303 + (2*t^8.307)/(g1^2*g2^2) + t^8.373/(g1^19*g2^17) - g1^7*g2^9*t^8.383 + t^8.449/(g1^10*g2^6) + 2*g1^16*g2^20*t^8.459 - (4*t^8.463)/(g1^6*g2^8) + (g2^5*t^8.525)/g1 + g1^25*g2^31*t^8.535 - 2*g1^3*g2^3*t^8.54 + g1^8*g2^16*t^8.601 + t^8.606/(g1^14*g2^12) + g1^12*g2^14*t^8.616 + t^8.62/(g1^10*g2^14) + t^8.682/(g1^5*g2) + t^8.686/(g1^27*g2^29) + g1^21*g2^25*t^8.692 + g1^4*g2^10*t^8.758 + (2*t^8.762)/(g1^18*g2^18) + g1^8*g2^8*t^8.772 + g1^13*g2^21*t^8.834 + (2*t^8.838)/(g1^9*g2^7) + g1^17*g2^19*t^8.849 + 3*g2^4*t^8.914 + 2*g1^9*g2^15*t^8.991 + (2*t^8.995)/(g1^13*g2^13) - t^4.153/(g1*g2*y) - t^6.228/(g1^8*g2^8*y) - (g1*g2^3*t^6.304)/y - (g1^6*g2^8*t^6.537)/y - t^6.617/(g1^7*g2^9*y) + t^7.224/(g1^5*g2^3*y) + (g2^2*t^7.457)/y + (g1^9*g2^13*t^7.533)/y + t^7.538/(g1^13*g2^15*y) + (2*t^7.614)/(g1^4*g2^4*y) + (2*g1^5*g2^7*t^7.69)/y + t^7.77/(g1^8*g2^10*y) + (g1*g2*t^7.847)/y + (g1^10*g2^12*t^7.923)/y + (2*t^8.003)/(g1^3*g2^5*y) + (g1^6*g2^6*t^8.079)/y - t^8.302/(g1^15*g2^15*y) - t^8.378/(g1^6*g2^4*y) - (g1^3*g2^7*t^8.454)/y + t^8.534/(g1^10*g2^10*y) - (g1^8*g2^12*t^8.687)/y - t^8.691/(g1^14*g2^16*y) + t^8.767/(g1^5*g2^5*y) + (4*g1^4*g2^6*t^8.843)/y + t^8.924/(g1^9*g2^11*y) - (t^4.153*y)/(g1*g2) - (t^6.228*y)/(g1^8*g2^8) - g1*g2^3*t^6.304*y - g1^6*g2^8*t^6.537*y - (t^6.617*y)/(g1^7*g2^9) + (t^7.224*y)/(g1^5*g2^3) + g2^2*t^7.457*y + g1^9*g2^13*t^7.533*y + (t^7.538*y)/(g1^13*g2^15) + (2*t^7.614*y)/(g1^4*g2^4) + 2*g1^5*g2^7*t^7.69*y + (t^7.77*y)/(g1^8*g2^10) + g1*g2*t^7.847*y + g1^10*g2^12*t^7.923*y + (2*t^8.003*y)/(g1^3*g2^5) + g1^6*g2^6*t^8.079*y - (t^8.302*y)/(g1^15*g2^15) - (t^8.378*y)/(g1^6*g2^4) - g1^3*g2^7*t^8.454*y + (t^8.534*y)/(g1^10*g2^10) - g1^8*g2^12*t^8.687*y - (t^8.691*y)/(g1^14*g2^16) + (t^8.767*y)/(g1^5*g2^5) + 4*g1^4*g2^6*t^8.843*y + (t^8.924*y)/(g1^9*g2^11)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47126 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.639 0.7933 0.8056 [M:[1.1493, 0.7399, 0.8507, 1.2338, 0.7924, 0.6817], q:[0.3962, 0.4545], qb:[0.8638, 0.7531], phi:[0.3831]] t^2.045 + t^2.22 + t^2.377 + t^2.552 + t^3.448 + t^3.527 + 2*t^3.701 + t^3.876 + t^4.09 + t^4.265 + t^4.422 + t^4.44 + 2*t^4.597 + t^4.755 + t^4.772 + t^4.851 + t^4.929 + t^5.104 + t^5.493 + t^5.572 + t^5.668 + 2*t^5.746 + t^5.904 + 2*t^5.921 - 2*t^6. - t^4.149/y - t^4.149*y detail