Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55650 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1^2$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7\phi_1q_1^2$ 0.655 0.8217 0.7971 [X:[], M:[1.1534, 0.7168, 0.8466, 1.231, 0.8212, 0.6914, 0.7944], q:[0.4106, 0.436], qb:[0.8726, 0.7429], phi:[0.3845]] [X:[], M:[[-3, -3], [2, 4], [3, 3], [2, 2], [-6, -8], [-7, -7], [7, 9]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_2$, $ M_7$, $ M_5$, $ M_3$, $ M_1$, $ M_4$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_6^2$, $ M_2M_6$, $ M_2^2$, $ M_6M_7$, $ M_2M_7$, $ M_5M_6$, $ M_2M_5$, $ M_3M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_3$, $ \phi_1q_2\tilde{q}_2$, $ M_7^2$, $ M_5M_7$, $ \tilde{q}_1\tilde{q}_2$, $ M_3M_7$, $ M_5^2$, $ M_3M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_3^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_6$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_6$, $ M_6\phi_1q_1q_2$, $ M_2M_4$, $ M_1M_7$, $ M_6\phi_1q_2^2$, $ M_2\phi_1q_2^2$ . -2 t^2.07 + t^2.15 + t^2.38 + t^2.46 + t^2.54 + t^3.46 + 2*t^3.69 + t^3.77 + t^4.15 + t^4.22 + t^4.3 + t^4.46 + t^4.53 + t^4.54 + 2*t^4.61 + t^4.69 + t^4.77 + 2*t^4.85 + t^4.92 + t^4.93 + t^5. + t^5.08 + t^5.53 + t^5.61 + t^5.77 + 3*t^5.84 + t^5.92 - 2*t^6. + t^6.08 + t^6.15 + t^6.16 + t^6.22 + 2*t^6.23 + t^6.3 + t^6.31 + t^6.37 + t^6.45 + t^6.53 + 2*t^6.61 + t^6.68 + 2*t^6.69 + 2*t^6.76 + 2*t^6.84 + 3*t^6.92 + 3*t^7. + t^7.07 + t^7.08 + 2*t^7.15 + 2*t^7.23 + t^7.31 + 2*t^7.39 + 2*t^7.46 + t^7.47 + t^7.54 + t^7.61 + t^7.68 + t^7.76 + t^7.84 + 2*t^7.92 + 3*t^7.99 - t^8.07 - 2*t^8.15 + 2*t^8.23 + 2*t^8.3 + 2*t^8.31 + t^8.37 - t^8.38 + t^8.45 - 2*t^8.46 + t^8.53 - t^8.54 + t^8.6 + t^8.61 + 2*t^8.62 + t^8.68 + 2*t^8.69 + 3*t^8.76 + t^8.77 + t^8.83 + 2*t^8.84 + t^8.85 + 3*t^8.91 + 4*t^8.99 - t^4.15/y - t^6.23/y - t^6.3/y - t^6.54/y - t^6.62/y + t^7.22/y + t^7.46/y + t^7.53/y + t^7.54/y + (2*t^7.61)/y + (2*t^7.69)/y + t^7.77/y + t^7.85/y + t^7.92/y + (2*t^8.)/y + t^8.08/y - t^8.3/y - t^8.38/y - t^8.45/y + t^8.53/y - (2*t^8.69)/y + t^8.77/y + (4*t^8.84)/y + t^8.92/y - t^4.15*y - t^6.23*y - t^6.3*y - t^6.54*y - t^6.62*y + t^7.22*y + t^7.46*y + t^7.53*y + t^7.54*y + 2*t^7.61*y + 2*t^7.69*y + t^7.77*y + t^7.85*y + t^7.92*y + 2*t^8.*y + t^8.08*y - t^8.3*y - t^8.38*y - t^8.45*y + t^8.53*y - 2*t^8.69*y + t^8.77*y + 4*t^8.84*y + t^8.92*y t^2.07/(g1^7*g2^7) + g1^2*g2^4*t^2.15 + g1^7*g2^9*t^2.38 + t^2.46/(g1^6*g2^8) + g1^3*g2^3*t^2.54 + t^3.46/(g1^3*g2^3) + 2*g1^2*g2^2*t^3.69 + g1^11*g2^13*t^3.77 + t^4.15/(g1^14*g2^14) + t^4.22/(g1^5*g2^3) + g1^4*g2^8*t^4.3 + g2^2*t^4.46 + g1^9*g2^13*t^4.53 + t^4.54/(g1^13*g2^15) + (2*t^4.61)/(g1^4*g2^4) + g1^5*g2^7*t^4.69 + g1^14*g2^18*t^4.77 + 2*g1*g2*t^4.85 + g1^10*g2^12*t^4.92 + t^4.93/(g1^12*g2^16) + t^5./(g1^3*g2^5) + g1^6*g2^6*t^5.08 + t^5.53/(g1^10*g2^10) + (g2*t^5.61)/g1 + t^5.77/(g1^5*g2^5) + 3*g1^4*g2^6*t^5.84 + g1^13*g2^17*t^5.92 - 2*t^6. + g1^9*g2^11*t^6.08 + g1^18*g2^22*t^6.15 + t^6.16/(g1^4*g2^6) + t^6.22/(g1^21*g2^21) + 2*g1^5*g2^5*t^6.23 + t^6.3/(g1^12*g2^10) + g1^14*g2^16*t^6.31 + (g2*t^6.37)/g1^3 + g1^6*g2^12*t^6.45 + t^6.53/(g1^7*g2^5) + t^6.61/(g1^20*g2^22) + g1^2*g2^6*t^6.61 + g1^11*g2^17*t^6.68 + (2*t^6.69)/(g1^11*g2^11) + (2*t^6.76)/g1^2 + 2*g1^7*g2^11*t^6.84 + (2*t^6.92)/(g1^6*g2^6) + g1^16*g2^22*t^6.92 + t^7./(g1^19*g2^23) + 2*g1^3*g2^5*t^7. + g1^12*g2^16*t^7.07 + t^7.08/(g1^10*g2^12) + t^7.15/(g1*g2) + g1^21*g2^27*t^7.15 + 2*g1^8*g2^10*t^7.23 + g1^17*g2^21*t^7.31 + t^7.39/(g1^18*g2^24) + g1^4*g2^4*t^7.39 + 2*g1^13*g2^15*t^7.46 + t^7.47/(g1^9*g2^13) + g1^22*g2^26*t^7.54 + t^7.61/(g1^17*g2^17) + t^7.68/(g1^8*g2^6) + g1*g2^5*t^7.76 + t^7.84/(g1^12*g2^12) + (2*t^7.92)/(g1^3*g2) + 3*g1^6*g2^10*t^7.99 - (2*t^8.07)/(g1^7*g2^7) + g1^15*g2^21*t^8.07 - 2*g1^2*g2^4*t^8.15 + 2*g1^11*g2^15*t^8.23 + t^8.3/(g1^28*g2^28) + g1^20*g2^26*t^8.3 + (2*t^8.31)/(g1^2*g2^2) + t^8.37/(g1^19*g2^17) - g1^7*g2^9*t^8.38 + t^8.45/(g1^10*g2^6) - (4*t^8.46)/(g1^6*g2^8) + 2*g1^16*g2^20*t^8.46 + (g2^5*t^8.53)/g1 - 2*g1^3*g2^3*t^8.54 + g1^25*g2^31*t^8.54 + g1^8*g2^16*t^8.6 + t^8.61/(g1^14*g2^12) + t^8.62/(g1^10*g2^14) + g1^12*g2^14*t^8.62 + t^8.68/(g1^5*g2) + t^8.69/(g1^27*g2^29) + g1^21*g2^25*t^8.69 + (2*t^8.76)/(g1^18*g2^18) + g1^4*g2^10*t^8.76 + g1^8*g2^8*t^8.77 + g1^13*g2^21*t^8.83 + (2*t^8.84)/(g1^9*g2^7) + g1^17*g2^19*t^8.85 + 3*g2^4*t^8.91 + (2*t^8.99)/(g1^13*g2^13) + 2*g1^9*g2^15*t^8.99 - t^4.15/(g1*g2*y) - t^6.23/(g1^8*g2^8*y) - (g1*g2^3*t^6.3)/y - (g1^6*g2^8*t^6.54)/y - t^6.62/(g1^7*g2^9*y) + t^7.22/(g1^5*g2^3*y) + (g2^2*t^7.46)/y + (g1^9*g2^13*t^7.53)/y + t^7.54/(g1^13*g2^15*y) + (2*t^7.61)/(g1^4*g2^4*y) + (2*g1^5*g2^7*t^7.69)/y + t^7.77/(g1^8*g2^10*y) + (g1*g2*t^7.85)/y + (g1^10*g2^12*t^7.92)/y + (2*t^8.)/(g1^3*g2^5*y) + (g1^6*g2^6*t^8.08)/y - t^8.3/(g1^15*g2^15*y) - t^8.38/(g1^6*g2^4*y) - (g1^3*g2^7*t^8.45)/y + t^8.53/(g1^10*g2^10*y) - t^8.69/(g1^14*g2^16*y) - (g1^8*g2^12*t^8.69)/y + t^8.77/(g1^5*g2^5*y) + (4*g1^4*g2^6*t^8.84)/y + t^8.92/(g1^9*g2^11*y) - (t^4.15*y)/(g1*g2) - (t^6.23*y)/(g1^8*g2^8) - g1*g2^3*t^6.3*y - g1^6*g2^8*t^6.54*y - (t^6.62*y)/(g1^7*g2^9) + (t^7.22*y)/(g1^5*g2^3) + g2^2*t^7.46*y + g1^9*g2^13*t^7.53*y + (t^7.54*y)/(g1^13*g2^15) + (2*t^7.61*y)/(g1^4*g2^4) + 2*g1^5*g2^7*t^7.69*y + (t^7.77*y)/(g1^8*g2^10) + g1*g2*t^7.85*y + g1^10*g2^12*t^7.92*y + (2*t^8.*y)/(g1^3*g2^5) + g1^6*g2^6*t^8.08*y - (t^8.3*y)/(g1^15*g2^15) - (t^8.38*y)/(g1^6*g2^4) - g1^3*g2^7*t^8.45*y + (t^8.53*y)/(g1^10*g2^10) - (t^8.69*y)/(g1^14*g2^16) - g1^8*g2^12*t^8.69*y + (t^8.77*y)/(g1^5*g2^5) + 4*g1^4*g2^6*t^8.84*y + (t^8.92*y)/(g1^9*g2^11)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47126 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1^2$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.639 0.7933 0.8056 [X:[], M:[1.1493, 0.7399, 0.8507, 1.2338, 0.7924, 0.6817], q:[0.3962, 0.4545], qb:[0.8638, 0.7531], phi:[0.3831]] t^2.04 + t^2.22 + t^2.38 + t^2.55 + t^3.45 + t^3.53 + 2*t^3.7 + t^3.88 + t^4.09 + t^4.26 + t^4.42 + t^4.44 + 2*t^4.6 + t^4.75 + t^4.77 + t^4.85 + t^4.93 + t^5.1 + t^5.49 + t^5.57 + t^5.67 + 2*t^5.75 + t^5.9 + 2*t^5.92 - 2*t^6. - t^4.15/y - t^4.15*y detail