Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2745 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ 0.6293 0.8168 0.7704 [X:[], M:[0.9733, 1.0801, 0.9199, 0.7967, 0.7967], q:[0.7433, 0.2834], qb:[0.4599, 0.4599], phi:[0.5134]] [X:[], M:[[4, 4], [-12, -12], [12, 12], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_5$, $ M_4$, $ M_3$, $ M_1$, $ \phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_5^2$, $ M_4M_5$, $ M_4^2$, $ M_3q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_3M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_5$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1M_4$, $ \phi_1^2q_2\tilde{q}_2$, $ M_5\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4\phi_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_3^2$, $ M_5\phi_1q_2^2$, $ M_4\phi_1q_2^2$, $ M_1M_3$, $ M_1^2$, $ M_3\phi_1^2$ $M_3\phi_1q_2^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ 0 2*t^2.23 + 2*t^2.39 + t^2.76 + t^2.92 + t^3.08 + t^3.24 + 2*t^3.77 + 3*t^4.3 + 3*t^4.46 + 4*t^4.62 + 3*t^4.78 + 2*t^4.99 + 4*t^5.15 + 4*t^5.31 + 2*t^5.47 + t^5.52 + 2*t^5.63 + t^5.68 + t^5.84 + 4*t^6.16 + t^6.32 + t^6.48 + 4*t^6.53 + 8*t^6.69 + 4*t^6.85 + 6*t^7.01 + 3*t^7.06 + 4*t^7.17 + 3*t^7.22 + 5*t^7.38 + 8*t^7.54 + 6*t^7.7 + 2*t^7.75 + 3*t^7.86 + 2*t^7.91 + 3*t^8.02 + 4*t^8.07 - 2*t^8.23 + t^8.28 - 2*t^8.39 + t^8.44 + 6*t^8.55 + 6*t^8.6 + 2*t^8.71 + t^8.76 + 2*t^8.87 + 4*t^8.92 - t^4.54/y - (2*t^6.93)/y + t^7.46/y + (4*t^7.62)/y + t^7.78/y + (2*t^7.99)/y + (6*t^8.15)/y + (4*t^8.31)/y + (4*t^8.47)/y + (2*t^8.63)/y + t^8.68/y + t^8.84/y - t^4.54*y - 2*t^6.93*y + t^7.46*y + 4*t^7.62*y + t^7.78*y + 2*t^7.99*y + 6*t^8.15*y + 4*t^8.31*y + 4*t^8.47*y + 2*t^8.63*y + t^8.68*y + t^8.84*y (g1^7*t^2.23)/g2^5 + (g2^7*t^2.23)/g1^5 + t^2.39/(g1*g2^13) + t^2.39/(g1^13*g2) + g1^12*g2^12*t^2.76 + g1^4*g2^4*t^2.92 + t^3.08/(g1^4*g2^4) + t^3.24/(g1^12*g2^12) + (g1^5*t^3.77)/g2^7 + (g2^5*t^3.77)/g1^7 + (g1^22*t^4.3)/g2^2 + g1^10*g2^10*t^4.3 + (g2^22*t^4.3)/g1^2 + (g1^14*t^4.46)/g2^10 + g1^2*g2^2*t^4.46 + (g2^14*t^4.46)/g1^10 + (g1^6*t^4.62)/g2^18 + (2*t^4.62)/(g1^6*g2^6) + (g2^6*t^4.62)/g1^18 + t^4.78/(g1^2*g2^26) + t^4.78/(g1^14*g2^14) + t^4.78/(g1^26*g2^2) + g1^19*g2^7*t^4.99 + g1^7*g2^19*t^4.99 + (2*g1^11*t^5.15)/g2 + (2*g2^11*t^5.15)/g1 + (2*g1^3*t^5.31)/g2^9 + (2*g2^3*t^5.31)/g1^9 + t^5.47/(g1^5*g2^17) + t^5.47/(g1^17*g2^5) + g1^24*g2^24*t^5.52 + t^5.63/(g1^13*g2^25) + t^5.63/(g1^25*g2^13) + g1^16*g2^16*t^5.68 + g1^8*g2^8*t^5.84 + (g1^4*t^6.16)/g2^20 + (2*t^6.16)/(g1^8*g2^8) + (g2^4*t^6.16)/g1^20 + t^6.32/(g1^16*g2^16) + t^6.48/(g1^24*g2^24) + (g1^29*t^6.53)/g2^7 + g1^17*g2^5*t^6.53 + g1^5*g2^17*t^6.53 + (g2^29*t^6.53)/g1^7 + (2*g1^21*t^6.69)/g2^15 + (2*g1^9*t^6.69)/g2^3 + (2*g2^9*t^6.69)/g1^3 + (2*g2^21*t^6.69)/g1^15 + (g1^13*t^6.85)/g2^23 + (g1*t^6.85)/g2^11 + (g2*t^6.85)/g1^11 + (g2^13*t^6.85)/g1^23 + (g1^5*t^7.01)/g2^31 + (2*t^7.01)/(g1^7*g2^19) + (2*t^7.01)/(g1^19*g2^7) + (g2^5*t^7.01)/g1^31 + g1^34*g2^10*t^7.06 + g1^22*g2^22*t^7.06 + g1^10*g2^34*t^7.06 + t^7.17/(g1^3*g2^39) + t^7.17/(g1^15*g2^27) + t^7.17/(g1^27*g2^15) + t^7.17/(g1^39*g2^3) + g1^26*g2^2*t^7.22 + g1^14*g2^14*t^7.22 + g1^2*g2^26*t^7.22 + (2*g1^18*t^7.38)/g2^6 + g1^6*g2^6*t^7.38 + (2*g2^18*t^7.38)/g1^6 + (3*g1^10*t^7.54)/g2^14 + (2*t^7.54)/(g1^2*g2^2) + (3*g2^10*t^7.54)/g1^14 + (2*g1^2*t^7.7)/g2^22 + (2*t^7.7)/(g1^10*g2^10) + (2*g2^2*t^7.7)/g1^22 + g1^31*g2^19*t^7.75 + g1^19*g2^31*t^7.75 + t^7.86/(g1^6*g2^30) + t^7.86/(g1^18*g2^18) + t^7.86/(g1^30*g2^6) + g1^23*g2^11*t^7.91 + g1^11*g2^23*t^7.91 + t^8.02/(g1^14*g2^38) + t^8.02/(g1^26*g2^26) + t^8.02/(g1^38*g2^14) + (g1^27*t^8.07)/g2^9 + g1^15*g2^3*t^8.07 + g1^3*g2^15*t^8.07 + (g2^27*t^8.07)/g1^9 - (g1^7*t^8.23)/g2^5 - (g2^7*t^8.23)/g1^5 + g1^36*g2^36*t^8.28 - t^8.39/(g1*g2^13) - t^8.39/(g1^13*g2) + g1^28*g2^28*t^8.44 + (g1^3*t^8.55)/g2^33 + (2*t^8.55)/(g1^9*g2^21) + (2*t^8.55)/(g1^21*g2^9) + (g2^3*t^8.55)/g1^33 + (g1^44*t^8.6)/g2^4 + g1^32*g2^8*t^8.6 + 2*g1^20*g2^20*t^8.6 + g1^8*g2^32*t^8.6 + (g2^44*t^8.6)/g1^4 + t^8.71/(g1^17*g2^29) + t^8.71/(g1^29*g2^17) + (g1^36*t^8.76)/g2^12 - g1^12*g2^12*t^8.76 + (g2^36*t^8.76)/g1^12 + t^8.87/(g1^25*g2^37) + t^8.87/(g1^37*g2^25) + (2*g1^28*t^8.92)/g2^20 + (g1^16*t^8.92)/g2^8 - 2*g1^4*g2^4*t^8.92 + (g2^16*t^8.92)/g1^8 + (2*g2^28*t^8.92)/g1^20 - t^4.54/(g1^2*g2^2*y) - t^6.93/(g1^3*g2^15*y) - t^6.93/(g1^15*g2^3*y) + (g1^2*g2^2*t^7.46)/y + (g1^6*t^7.62)/(g2^18*y) + (2*t^7.62)/(g1^6*g2^6*y) + (g2^6*t^7.62)/(g1^18*y) + t^7.78/(g1^14*g2^14*y) + (g1^19*g2^7*t^7.99)/y + (g1^7*g2^19*t^7.99)/y + (3*g1^11*t^8.15)/(g2*y) + (3*g2^11*t^8.15)/(g1*y) + (2*g1^3*t^8.31)/(g2^9*y) + (2*g2^3*t^8.31)/(g1^9*y) + (2*t^8.47)/(g1^5*g2^17*y) + (2*t^8.47)/(g1^17*g2^5*y) + t^8.63/(g1^13*g2^25*y) + t^8.63/(g1^25*g2^13*y) + (g1^16*g2^16*t^8.68)/y + (g1^8*g2^8*t^8.84)/y - (t^4.54*y)/(g1^2*g2^2) - (t^6.93*y)/(g1^3*g2^15) - (t^6.93*y)/(g1^15*g2^3) + g1^2*g2^2*t^7.46*y + (g1^6*t^7.62*y)/g2^18 + (2*t^7.62*y)/(g1^6*g2^6) + (g2^6*t^7.62*y)/g1^18 + (t^7.78*y)/(g1^14*g2^14) + g1^19*g2^7*t^7.99*y + g1^7*g2^19*t^7.99*y + (3*g1^11*t^8.15*y)/g2 + (3*g2^11*t^8.15*y)/g1 + (2*g1^3*t^8.31*y)/g2^9 + (2*g2^3*t^8.31*y)/g1^9 + (2*t^8.47*y)/(g1^5*g2^17) + (2*t^8.47*y)/(g1^17*g2^5) + (t^8.63*y)/(g1^13*g2^25) + (t^8.63*y)/(g1^25*g2^13) + g1^16*g2^16*t^8.68*y + g1^8*g2^8*t^8.84*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3258 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1q_2^2$ 0.6388 0.8344 0.7656 [X:[], M:[0.9571, 1.1287, 0.8713, 0.8251, 0.8251, 0.8713], q:[0.7393, 0.3036], qb:[0.4357, 0.4357], phi:[0.5214]] 2*t^2.22 + 2*t^2.48 + 2*t^2.61 + t^2.87 + t^3.13 + 2*t^3.78 + 3*t^4.18 + 3*t^4.44 + 4*t^4.69 + 4*t^4.83 + 3*t^4.95 + 6*t^5.09 + 3*t^5.23 + 4*t^5.35 + 2*t^5.49 + 2*t^5.74 - t^6. - t^4.56/y - t^4.56*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1742 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4q_1\tilde{q}_1$ 0.6135 0.7901 0.7764 [X:[], M:[0.9652, 1.1043, 0.8957, 0.7952], q:[0.7413, 0.2934], qb:[0.4635, 0.4322], phi:[0.5174]] t^2.18 + t^2.27 + t^2.39 + t^2.69 + t^2.9 + t^3.1 + t^3.31 + t^3.52 + t^3.73 + t^3.82 + t^4.15 + t^4.24 + t^4.33 + t^4.35 + t^4.45 + t^4.54 + t^4.56 + t^4.66 + t^4.77 + t^4.86 + t^4.96 + 2*t^5.07 + t^5.17 + 2*t^5.28 + t^5.37 + t^5.38 + t^5.49 + t^5.58 + 2*t^5.7 + 2*t^5.79 + t^5.91 - t^4.55/y - t^4.55*y detail