Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1742 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ | 0.6135 | 0.7901 | 0.7764 | [M:[0.9652, 1.1043, 0.8957, 0.7952], q:[0.7413, 0.2934], qb:[0.4635, 0.4322], phi:[0.5174]] | [M:[[4, 4], [-12, -12], [12, 12], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{3}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 0 | t^2.177 + t^2.271 + t^2.386 + t^2.687 + t^2.896 + t^3.104 + t^3.313 + t^3.521 + t^3.729 + t^3.823 + t^4.145 + t^4.239 + t^4.333 + t^4.354 + t^4.448 + t^4.542 + t^4.562 + t^4.656 + t^4.771 + t^4.864 + t^4.958 + 2*t^5.073 + t^5.167 + 2*t^5.281 + t^5.374 + t^5.375 + t^5.49 + t^5.583 + 2*t^5.698 + 2*t^5.791 + t^5.906 + t^6.115 + t^6.208 + t^6.209 + t^6.322 + 2*t^6.416 + t^6.417 + t^6.51 + 2*t^6.531 + t^6.604 + 2*t^6.625 + t^6.626 + t^6.719 + t^6.739 + t^6.813 + 2*t^6.833 + t^6.926 + t^6.948 + t^7.02 + 2*t^7.041 + t^7.042 + t^7.135 + t^7.157 + t^7.229 + 3*t^7.25 + t^7.344 + t^7.438 + 3*t^7.458 + t^7.551 + t^7.645 + t^7.646 + t^7.666 + 2*t^7.667 + 2*t^7.76 + t^7.854 + 2*t^7.874 + t^7.875 + 2*t^7.968 + t^8.061 + t^8.062 + t^8.083 + t^8.084 + t^8.156 + t^8.27 - 2*t^8.271 + t^8.291 + t^8.292 + 2*t^8.385 - t^8.386 + 2*t^8.479 + t^8.499 + t^8.5 + t^8.573 + 2*t^8.593 + t^8.594 + t^8.666 + 2*t^8.708 + 2*t^8.802 + t^8.803 + t^8.875 + t^8.895 - 2*t^8.896 + 2*t^8.916 - t^4.552/y - t^6.938/y + t^7.448/y + t^7.562/y + t^7.656/y + t^7.864/y + t^7.958/y + (2*t^8.073)/y + (2*t^8.167)/y + (2*t^8.281)/y + t^8.375/y + (2*t^8.49)/y + t^8.583/y + t^8.584/y + (2*t^8.698)/y + (2*t^8.791)/y + (2*t^8.906)/y - t^4.552*y - t^6.938*y + t^7.448*y + t^7.562*y + t^7.656*y + t^7.864*y + t^7.958*y + 2*t^8.073*y + 2*t^8.167*y + 2*t^8.281*y + t^8.375*y + 2*t^8.49*y + t^8.583*y + t^8.584*y + 2*t^8.698*y + 2*t^8.791*y + 2*t^8.906*y | (g2^7*t^2.177)/g1^5 + (g1^7*t^2.271)/g2^5 + t^2.386/(g1^13*g2) + g1^12*g2^12*t^2.687 + g1^4*g2^4*t^2.896 + t^3.104/(g1^4*g2^4) + t^3.313/(g1^12*g2^12) + g1*g2^13*t^3.521 + (g2^5*t^3.729)/g1^7 + (g1^5*t^3.823)/g2^7 + (g2^22*t^4.145)/g1^2 + g1^10*g2^10*t^4.239 + (g1^22*t^4.333)/g2^2 + (g2^14*t^4.354)/g1^10 + g1^2*g2^2*t^4.448 + (g1^14*t^4.542)/g2^10 + (g2^6*t^4.562)/g1^18 + t^4.656/(g1^6*g2^6) + t^4.771/(g1^26*g2^2) + g1^7*g2^19*t^4.864 + g1^19*g2^7*t^4.958 + (2*g2^11*t^5.073)/g1 + (g1^11*t^5.167)/g2 + (2*g2^3*t^5.281)/g1^9 + g1^24*g2^24*t^5.374 + (g1^3*t^5.375)/g2^9 + t^5.49/(g1^17*g2^5) + g1^16*g2^16*t^5.583 + t^5.698/(g1^25*g2^13) + (g2^20*t^5.698)/g1^4 + 2*g1^8*g2^8*t^5.791 + (g2^12*t^5.906)/g1^12 + (g2^4*t^6.115)/g1^20 + g1^13*g2^25*t^6.208 + t^6.209/(g1^8*g2^8) + (g2^29*t^6.322)/g1^7 + 2*g1^5*g2^17*t^6.416 + t^6.417/(g1^16*g2^16) + g1^17*g2^5*t^6.51 + (2*g2^21*t^6.531)/g1^15 + (g1^29*t^6.604)/g2^7 + (2*g2^9*t^6.625)/g1^3 + t^6.626/(g1^24*g2^24) + (g1^9*t^6.719)/g2^3 + (g2^13*t^6.739)/g1^23 + (g1^21*t^6.813)/g2^15 + (g2*t^6.833)/g1^11 + g1^10*g2^34*t^6.833 + g1^22*g2^22*t^6.926 + (g2^5*t^6.948)/g1^31 + g1^34*g2^10*t^7.02 + 2*g1^2*g2^26*t^7.041 + t^7.042/(g1^19*g2^7) + g1^14*g2^14*t^7.135 + t^7.157/(g1^39*g2^3) + g1^26*g2^2*t^7.229 + (3*g2^18*t^7.25)/g1^6 + g1^6*g2^6*t^7.344 + (g1^18*t^7.438)/g2^6 + (3*g2^10*t^7.458)/g1^14 + g1^19*g2^31*t^7.551 + g1^31*g2^19*t^7.645 + (g1^10*t^7.646)/g2^14 + (g2^35*t^7.666)/g1 + (2*g2^2*t^7.667)/g1^22 + 2*g1^11*g2^23*t^7.76 + g1^23*g2^11*t^7.854 + (2*g2^27*t^7.874)/g1^9 + t^7.875/(g1^30*g2^6) + 2*g1^3*g2^15*t^7.968 + g1^36*g2^36*t^8.061 + g1^15*g2^3*t^8.062 + (g2^19*t^8.083)/g1^17 + t^8.084/(g1^38*g2^14) + (g1^27*t^8.156)/g2^9 + g1^28*g2^28*t^8.27 - (2*g1^7*t^8.271)/g2^5 + (g2^44*t^8.291)/g1^4 + (g2^11*t^8.292)/g1^25 + 2*g1^8*g2^32*t^8.385 - t^8.386/(g1^13*g2) - t^8.479/(g1*g2^13) + 3*g1^20*g2^20*t^8.479 + (g2^36*t^8.499)/g1^12 + (g2^3*t^8.5)/g1^33 + g1^32*g2^8*t^8.573 + 2*g2^24*t^8.593 + t^8.594/(g1^21*g2^9) + (g1^44*t^8.666)/g2^4 + (2*g2^28*t^8.708)/g1^20 + (2*g2^16*t^8.802)/g1^8 + t^8.803/(g1^29*g2^17) + (g1^36*t^8.875)/g2^12 + g1^25*g2^37*t^8.895 - 2*g1^4*g2^4*t^8.896 + (2*g2^20*t^8.916)/g1^28 - t^4.552/(g1^2*g2^2*y) - t^6.938/(g1^15*g2^3*y) + (g1^2*g2^2*t^7.448)/y + (g2^6*t^7.562)/(g1^18*y) + t^7.656/(g1^6*g2^6*y) + (g1^7*g2^19*t^7.864)/y + (g1^19*g2^7*t^7.958)/y + (2*g2^11*t^8.073)/(g1*y) + (2*g1^11*t^8.167)/(g2*y) + (2*g2^3*t^8.281)/(g1^9*y) + (g1^3*t^8.375)/(g2^9*y) + (2*t^8.49)/(g1^17*g2^5*y) + (g1^16*g2^16*t^8.583)/y + t^8.584/(g1^5*g2^17*y) + t^8.698/(g1^25*g2^13*y) + (g2^20*t^8.698)/(g1^4*y) + (2*g1^8*g2^8*t^8.791)/y + (2*g2^12*t^8.906)/(g1^12*y) - (t^4.552*y)/(g1^2*g2^2) - (t^6.938*y)/(g1^15*g2^3) + g1^2*g2^2*t^7.448*y + (g2^6*t^7.562*y)/g1^18 + (t^7.656*y)/(g1^6*g2^6) + g1^7*g2^19*t^7.864*y + g1^19*g2^7*t^7.958*y + (2*g2^11*t^8.073*y)/g1 + (2*g1^11*t^8.167*y)/g2 + (2*g2^3*t^8.281*y)/g1^9 + (g1^3*t^8.375*y)/g2^9 + (2*t^8.49*y)/(g1^17*g2^5) + g1^16*g2^16*t^8.583*y + (t^8.584*y)/(g1^5*g2^17) + (t^8.698*y)/(g1^25*g2^13) + (g2^20*t^8.698*y)/g1^4 + 2*g1^8*g2^8*t^8.791*y + (2*g2^12*t^8.906*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2743 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ | 0.6107 | 0.7887 | 0.7743 | [M:[0.9465, 1.1605, 0.8395, 0.8395], q:[0.7366, 0.3169], qb:[0.4238, 0.4157], phi:[0.5267]] | t^2.198 + t^2.222 + 2*t^2.519 + t^2.84 + t^3.16 + t^3.457 + t^3.481 + t^3.778 + t^3.802 + t^4.074 + t^4.099 + t^4.123 + t^4.395 + t^4.42 + t^4.444 + 2*t^4.716 + 2*t^4.741 + 4*t^5.037 + t^5.062 + 3*t^5.358 + t^5.383 + t^5.655 + 3*t^5.679 + 2*t^5.976 + t^6. - t^4.58/y - t^4.58*y | detail | |
2745 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.6293 | 0.8168 | 0.7704 | [M:[0.9733, 1.0801, 0.9199, 0.7967, 0.7967], q:[0.7433, 0.2834], qb:[0.4599, 0.4599], phi:[0.5134]] | 2*t^2.23 + 2*t^2.39 + t^2.76 + t^2.92 + t^3.08 + t^3.24 + 2*t^3.77 + 3*t^4.3 + 3*t^4.46 + 4*t^4.62 + 3*t^4.78 + 2*t^4.99 + 4*t^5.15 + 4*t^5.31 + 2*t^5.47 + t^5.519 + 2*t^5.631 + t^5.679 + t^5.84 - t^4.54/y - t^4.54*y | detail | |
2744 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | 0.6098 | 0.7827 | 0.7791 | [M:[0.9775, 1.0675, 0.9325, 0.8119], q:[0.7444, 0.2781], qb:[0.4437, 0.4887], phi:[0.5113]] | t^2.166 + t^2.301 + t^2.436 + t^2.797 + t^2.932 + t^3.068 + t^3.203 + 2*t^3.699 + t^3.834 + t^4.196 + 2*t^4.331 + 2*t^4.466 + 2*t^4.601 + t^4.736 + t^4.871 + t^4.963 + 2*t^5.098 + 3*t^5.233 + 2*t^5.368 + t^5.503 + t^5.595 + t^5.638 + t^5.73 + 2*t^5.865 + t^6. - t^4.534/y - t^4.534*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
218 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ | 0.5976 | 0.7632 | 0.783 | [M:[0.9572, 1.1283, 0.8717], q:[0.7393, 0.3035], qb:[0.4358, 0.4358], phi:[0.5214]] | 2*t^2.218 + t^2.615 + t^2.872 + t^3.128 + t^3.385 + 2*t^3.525 + 2*t^3.782 + 3*t^4.179 + 3*t^4.436 + 2*t^4.833 + 2*t^5.09 + t^5.23 + 2*t^5.346 + t^5.487 + 5*t^5.743 - t^4.564/y - t^4.564*y | detail |